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Introduction: 

The treatment of malignant bone tumors of the knee often requires the removal of the diseased 
femur/tibia affected segment using planned cutting planes, followed by the implant of a prosthesis 
[2]. Another widely used approach involves reconstruction using an allograft, which is bone tissue 
harvested from a donor [5]. Donor bones are typically supplied by musculoskeletal tissue banks, 
facilities dedicated to harvesting, preserving, and distributing tissues for transplantation. 

Selecting the most appropriate donor is a complex process, where matching the size and shape of 
the recipient bone plays a vital role in providing good integration. A closer shape matching between 
donor and recipient can also improve post-operative outcomes, lowering the possibility of fractures or 
non-unions [13]. Furthermore, allografts taken from the same anatomical site as the affected area 
exhibit similar mechanical and osteoconductive properties [16]. However, the tumor often alters the 
recipient bone structure, making it difficult to compare directly with the potential donor bones. 

To overcome this challenge, virtual reconstruction of premorbid anatomy is a common approach. 
The contralateral method, considered the gold standard, consists in the creation of a mirrored 3D 
model of the healthy contralateral bone, providing an accurate representation of the premorbid 
anatomy of the affected bone. [4, 6, 15]. 

Nevertheless, this approach is not always a viable option since it requires CT scans of both limbs. 
Many times, this is not possible since this would expose the patient to an excessive dose of x-ray, and, 
anyway, it still requires the contralateral to be healthy, which sometimes may not be the case. 
Another widely used tool for anatomy reconstruction is Statistical Shape Model (SSM). SSM can learn 
shape variation from a class of given samples and represent the shape variation using the 
leading principal components. SSM has been used for reconstruction of the premorbid anatomy of a 
variety of different bones in the context of many surgical procedures [8, 14, 17].  

However, as far as it is known, SSM has never been used for anatomy reconstruction in the context 
of allograft selection. Therefore, the aim of this work is to develop and evaluate the ability of an SSM to 
reconstruct the full anatomy of the femur in order to provide a reliable reconstruction that can be used 
as a comparison to possible donor bones thus improving the allograft selection process. 
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Statistical Shape Model Definition: 
The main assumption of a Statistical Shape Model is that all possible shape deformations can be 

learned from a set of M samples forming an appropriate Training Set 1 2{ , , , }M . A complex shape 

i can be described as a dense set of landmarks kx distributed on the surface: 

3| , 1, ,i i i
k k ix x k N  

where iN  is the number of points used to describe the shape i , and kx  contains the 3 Cartesian 

coordinates of the k-th point. 

The crucial assumption is that the landmark points are in correspondence among the samples. 

This means that the k-th landmark of two shapes i  and j  represents the same anatomical point of 
the shape. Finding a meaningful correspondence between shapes is one of the critical tasks of 
statistical shape analysis. Once it is established, all shapes can be described with the same number of 

points N . Therefore, by defining each  shape i as a vector 3N
ix  consisting of the stacked 

, ,x y z components of each point, the shape variations can be modeled using a normal distribution, 

where the mean x  and covariance matrix L are estimated as follows: 
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However, since the number of landmark points describing the samples is usually quite large, a high 
amount of data is necessary to represent the covariance matrix L explicitly. Fortunately, as it is 
determined completely by theM samples, it has at most rankM and can therefore be represented 
using M  basis vectors. This is achieved by performing a Principal Component Analysis [7], thus 
leading to the following definition of SSM: 
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Where m and m  are, respectively, the eigenvalues and eigenvectors of matrix L , m follows a normal 

distribution with mean = 0 and sigma = 1 and c  represents the number of significant eigenvalues. The 
number c  is defined so that the accumulated variance reaches a certain ratio of the total variance, 
usually between 0.9 and 0.98 (in this work 0.98 is used). Equation 3 allows to have an efficient, 
parametric representation of the distribution. 

Although the entire process appears simple, determining the correspondences is a challenging 
step since the quality of the SSM itself is heavily influenced by the established correspondences. The 
most widely used methods for this task rely on the Iterative Closest Point (ICP) algorithm [1] or the 
Coherent Point Drift (CPD) algorithm [11]. In this work the algorithm described in [9] is used to 
establish correspondences between samples of the training set.  

For this study, the training set consisted of 78 healthy right femurs (42 males, 36 females, mean 
age: 29.4 years). The 3D models of the femurs were obtained by segmentation, using the software 
Materialise Mimics 26 [10], of post-mortem Computed Tomography Images obtained from the New 
Mexico Decedent Image Database [3]. In order to reduce computational load 3D models were then 
decimated to 20000 points. The 3D models were first translated to align their centroid with the origin 
of the Global Reference System. After that a reference shape was chosen randomly from the training 
set and all other femurs were aligned to the reference using rigid ICP algorithm in order to remove 
relative rotation between the models. Then the algorithm described in [9] was used to establish 
correspondences. At this point the mean shape and the covariance matrix could then be computed 
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through Equation 1 and 2. By performing Principal Component Analysis, the SSM was defined through 
Equation 3.  

Statistical Shape Model Evaluation: 

The most widely used approach for assessing the quality of an SSM is based on three key properties: 
Generalization, Specificity, and Compactness [8]. 

The first property, Generalization ( )G , measures how well the SSM can replicate a given shape. It 

is typically assessed through a series of leave-one-out tests on the training set, by computing the 

distance between the omitted shape i  and its closest match *( )
i c generated by the reduced SSM. The 

Generalization is given as a function of the number c  of the significant eigenvalues used to define the 
parametric model: 
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Lower G values correspond to better-performing SSMs. The metric D  is used to quantify the distance 
between shapes. Following the approach in [8], this study uses the Symmetric Mean (SM) distance as 
metricD . 

The second metric is Specificity ( )S , which evaluates the ability of the model to produce new 

shapes that are consistent with the family of shapes encoded in the model. This is evaluated by 
generating random parameter sets of  and calculating the average distance between each 

corresponding generated shape **( )
k c and its nearest match in the training set, over a large number of 

iterations ( )t . As a Generalization, Specificity is given as a function of the number of significant 

eigenvalues c : 
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where the metric D  used for Specificity is the Mean Absolute Distance between corresponding points 
to make the measurement robust and independent from the number of landmarks [8]. 

Interestingly, ( )S c  tends to worsen as c  increases. While this may seem counterintuitive, it can be 

explained by noticing that greater variability allows the SSM to elude the training set members more 
easily. 

The last metric, Compactness ( )C , represents the cumulative variance of the model as determined 

by principal component analysis (PCA). In this work C was normalized with respect to the total 
variance: 
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A compact model, characterized by a low c  value, requires fewer parameters to encode greater 
variability within the training set. In contrast to the first two measures, higher C values correspond to 
better SSMs. 

Generalization, Specificity, and Compactness for the SSM constructed in this work are reported in 
Fig. 1. As can be seen from Fig. 1c the first mode of variation accounts for 90.7 % of the total variance 
of the model. Compactness grows quickly reaching the value of 98% for 13c , indicating that a 
compact model can represent the great majority of the possible shapes encoded in the model. 
Furthermore from Fig. 1a-b it can be noted how the curves of Generalization and Specificity flatten for 
10c  meaning that 13c is a good choice to balance the ability to replicate a given shape 
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( 0.990G mm for 13c ) and the ability to generate new shapes consistent with the family of shapes 
encoded in the model ( 4.622S mm for 13c ). 

  

(a) (b) 

 

(c) 
Fig. 1: (a) Generalization, (b) Specificity, (c) Compactness as a function of modes of variation c. 

Reconstruction of missing anatomy: 

After building and evaluating the SSM, its ability to infer the complete shape of a femur from a partial 
one was tested. A dataset of 49 femurs was chosen randomly from the 78 femurs composing the 
training set of the SSM. 

Through the software Geomagic Design X [12], 20 different configurations of resection were 
generated and replicated on each of the 49 cases in the dataset such that a total of 980 partial femurs 
representing simulated clinical cases, were obtained.  

A series of leave-one-out tests were performed meaning that for each of the 49 cases, an SSM was 
built using the remaining 77 femurs, then the reduced SSM was used to infer the full shape of the 
femur for the 20 different resections using 13c . Three examples of reconstruction are reported in 
Fig. 2. 

 

 
Fig. 2: Examples of reconstruction using 13 modes of variation. 

 
To evaluate the similarity between the reconstructions generated by the SSM and the real anatomy of 
the bone, Chamfer Distance ( )CD and Hausdorff Distance ( )HD were used. CD and HD between two-

point clouds 1P  and 2P can be defined as: 
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where
2

2 2
| ( , ) min

y P
y y P d x y x y (and similarly for x ) while 1P  and 2P  represent the number of 

points of each point cloud. Thus CD can be intended as the mean distance between the two point 
clouds, while the HD  as the maximum distance. In  

Fig. 3 the mean and standard deviation of HD  and CD , calculated across all 980 cases, are reported. 

As can be seen, the constructed SSM was able to reconstruct the missing anatomy with a mean CD  of 

1.066  mm. 
 

 
 

Fig. 3: Chamfer Distance and Hausdorff Distance mean and standard deviation across all 980 
reconstructions. 
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