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Introduction:

In this study, we propose to use Jacobi elliptic functions as blending functions for free-form curve formu-
lations. For example, it is known that the shape of a rotating rope can be expressed by elliptic functions,
and it is meaningful to use elliptic functions as blending functions. We propose to use elliptic functions
as blending functions, following the construction method of basis functions for Multiquadratic Curves:
MQ-Curves, which is an Extended Complete Tchebyche� System.

Multiquadratic Curves: MQ-Curves:

Multiquadratic(MQ-)curve [2] uses the space spanned by

U = {1, t,
√
c2 + t2,

√
c2 + (1− t)2}, c ̸= 0, t ∈ I = [0, 1]. (2.1)

The normal curve u ∈ A3 is an arc of an algebraic curve of order 4, since u lies in the intersection
of the two hyperbolic cylinders x2

2 − c21 = c2 and x2
3 − (1 − x1)

2 = c2. Eck [2] presented a Bézier-like
representation of MQ-curves and derived some interesting properties. We have now an easy approach to
MQ-curves. The curves possess the convex hull property and the variation diminishing property which
respect to their control polygon b0b1b2b3.

Local Basis Function:

Based on Eck [2] in this subsection, we will think about MQ-curve segment. It is de�ned as

ϕ0(c, t) = a0(1− t) + a1
√
c2 + (1− t)2 + a2

√
c2 + t2 + a3t (2.2)

They introduced a complicated local blending functions for a MQ-curve segment with properties similar
to the Bernstein basis in the case of polynomials. Eq.(2.2) is written as follows

ϕ(c, t) =

3∑
i=0

biΩi(c, t) t ∈ [0, 1] (2.3)
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Ωi(c, t) are de�ned

Ω1(c, t) = (s(c) + c)2
β(c)

α(c)
(t− s(c)

√
c2 + (1− t)2 + c

√
c2 + (t2))

Ω2(c, t) = ω1(c, 1− t)

Ω3(c, t) = t− α(c)Ω1(c, t) + (α(c)− 1)Ω2(c, t)

Ω0(c, t) = Ω(c, 1− t) (2.4)

where the auxiliary functions used in the above equations are de�ned as

s(c) =
√
c2 + 1, β(c) =

s(c)

s(c) + c
, α(c) =

cs(c)

2c2 + 1 + cs(c)
(2.5)

In Eq.(2.3) the control points bi is determined by
b0
b1
b2
b3

 =


1 s(c) c 0

1− α(c) s(c)− α(c)
s(c) c α(c)

α(c) c s(c)− α(c)
s(c) 1− α(c)

0 c s(c) 1




a0
a1
a2
a3

 (2.6)

The relations among the control points and Eq.(2.3) are

b0 = ϕ0(c, 0)

b1 = ϕ0(c, 0) + α(c)ϕ′
0(c, 0) = ϕ0(c, 1) + (α(c)− 1)ϕ′

0(c, 1) + α(c)β(c)ϕ′′
0(c, 1)

b2 = ϕ0(c, 1)− α(c)ϕ′(c, 1) = ϕ0(c, 0) + (1− α(c))ϕ′
0(c, 0) + α(c)β(c)ϕ′′

0(c, 0)

b3 = ϕ0(c, 1) (2.7)

where ` denotes di�erentiation of ϕ(c, t) with respect to t. Note that
∑3

i=0 Ωi(c, t) = 1 for t ∈ [0, 1].
No explanation is done on how to derive Ωi(c, t) in Eck [2]. Therefore we will derive these blending

functions and extend them. From Eq.(2.3),

b1 − b0 = α(c)ϕ′
0(c, 0)

b3 − b2 = α(c)ϕ′
0(c, 0) (2.8)

The above equations means that the tangent vectors of a MQ-curve segment are parallel with b1 − b0
and b3 − b2 at the start point and end points just like the cubic Bézier curve. Eck [2] determine the
coe�cient of α(c) such that the curve in at Least three dimensions, b1 is in fact the intersection points
of the tangent in ϕ(c, 0) and the osculating plane in ϕ(c, 1), and vice versa for b2.

From Eq(2.4),

∂Ω0

∂t
(c, 1) = 0,

∂Ω1

∂t
(c, 1) = 0 (2.9)

Because of symmetry between Ω0(c, t) and Ω3(c, t) along t = 1/2 and Ω1(c, t) and Ω2(c, t)

∂Ω2

∂t
(c, 0) = 0,

∂Ω3

∂t
(c, 0) = 0 (2.10)
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Furthermore the following equations are satis�ed:

∂ϕ0(c, t)

∂t
|t=0 = b1 − b0

∂ϕ0(c, t)

∂t
|t=1 = b3 − b2 (2.11)

The above conditions are rewritten by using ai

b1 − b0 =
c
(√

c2 + 1(a3 − a0) + a1
)

c
(√

c2 + 1 + 2c
)
+ 1

=
c
√
c2 + 1

c
(√

c2 + 1 + 2c
)
+ 1

∂ϕ(c, t)

∂t
|t=0

b3 − b2 =
c
(√

c2 + 1(a3 − a0) + a2
)

c
(√

c2 + 1 + 2c
)
+ 1

=
c
√
c2 + 1

c
(√

c2 + 1 + 2c
)
+ 1

∂ϕ(c, t)

∂t
|t=1 (2.12)

Derivation of b functions:

We assume that the blending functions hi(, ct) of the MS-segment are linear combinations of f0(c, t) =
1 − t, f1(c, t) =

√
c2 + (1− t)2, f2(c, t) =

√
c2 + t2 and f(3(c, t) = t. Furthermore we assume h2(c, t) =

h1(c, 1− t), h3(c, t) = h1(c, 1− t).
Then h0(c, t) and h1(c, t) are de�ned by

h0(c, t) =

3∑
i=0

aifi(c, t)

h1(c, t) =

3∑
i=0

bifi(c, t) (2.13)

where ai and bi do not depend on either c or t and they are constants. Their number is equal to 8. The
conditions on these functions are

h0(c, 0) = 1, h0(c, 1) = 0,
∂h0(c, t)

∂t
|t=1 = 0

h1(c, 0) = 0, h1(c, 1) = 0,
∂h0(c, t)

∂t
|t=0 = −

c
(√

c2 + 1 + 2c
)
+ 1

c
√
c2 + 1

(2.14)

The last equation should be satis�ed from Eq.(eq:tan0). We need the following conditions for the partition
of unity, which should not depend on either c or t and

a0 + a3 + b0 + b1 = 1

a1 + a2 + b1 + b2 = 0 (2.15)

We have 9 constraints and the number of variables is 8. Fortunately, these conditions are linearly
dependent, and we can omit one of them. By solving a system of linear equations for ai and bi, i = 0, 3,
we obtain Ωi(c, t) in Eck [2].
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d = 0.5 d = 3

Fig. 1: New blending functions of the MQ-curve segment, (c, d) = (1, 1/2) and (c, d) = (1, 3).

New Blending Functions:

We can control the blending functions by changing the value d =
c(

√
c2+1+2c)+1

c
√
c2+1

in Eq.(2.14). We will

show blending functions with d = 1/2 and d = 3 in FIg.1.

Space spanned by (t, sn((1− t)K, k), sn(Kt, k), t):

We would like to represent the shape of the rope by blending functions. Using (t, sn((1−t)K, k), sn(Kt, k), t
and adjusting parameters, the half shape of the rope is given by

C(t) = (t, sn(Kt, k))

= p0(1− t) + p1sn((1− t)K, k) + p2sn(Kt, k),+p3t (2.16)

where p0(0, 0), p1 = (0, 0), p2 = (0, 1) and p3 = (1, 0).
Then the matric M3 similar to M0, i = 0, 1, 2 is given by

1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
−1 −K(k) 0 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
0 0 0 0 −1 −K(k) 0 1
−1 0 K(k) 1 0 0 0 0
0 1 1 0 0 1 1 0





a0

a1

a2

a3

b0
b1
b2
b3


=



1
0
0
0
0
0
−d
0


(2.17)

Therefore

(q0, q1, q2, q3)


b0(t)
b1(t)
b2(t)
b3(t)

 = (q0, q1, q2, q3)M F

= (p0, p1, p2, p3)F (2.18)

Then

(q0, q1, q2, q3) = (p0, p1, p2, p3)M
−1 (2.19)

For (k, d) = (0.3, 2), we obtain q0 = (0, 0), q1 = (0.5, 0.856945), q2 = (0.5, 1) and q3 = (1, 1). Figure
2 show the locations of the control points and the curve generated with these control points to generate
the half shape of the rope.
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Fig. 2: The half shape of the rope

Conclusions:

In the full paper, we will propose to use Jacobi elliptic functions as blending functions for free-form curve
formulations based on the method described in this extended abstract. For example, it is known that
the shape of a rotating rope can be expressed by elliptic functions, and it is meaningful to use elliptic
functions as blending functions. We has proposed to use elliptic functions as blending functions, following
the construction method of basis functions for Multiquadratic Curves: MQ-Curves, which is an Extended
Complete Tchebyche� System.
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