
255

Title:
Bending Simulation Framework for Rapid Feasibility Checks of Sheet Metal Parts

Authors:
Sergey E. Slyadnev, sergey@quaoar.pro, Quaoar Studio LLC

Keywords:
Sheet Metal, Bending Sequence, Unfolding, Feature Recognition

DOI: 10.14733/cadconfP.2025.255-260

Introduction:
Finding a possible bend sequence for a folded sheet metal part remains a challenging problem in the
CAD/NC integration field. Solving this problem calls for heuristic methods to prevent greedy search.
In automated quotation systems, it is often enough to identify just any feasible sequence to validate the
manufacturability of a part. If a feasible sequence cannot be identified, the corresponding part is flagged
for human review. If no manufacturability issues are detected, a part might be passed over for quotation
and preparation of technical drawings, thus saving the valuable engineer’s time. As a result, bending
feasibility analysis helps human operators to focus on potentially problematic parts and highlight possible
fabrication difficulties, while the processing of simpler parts can be fully automated.

Early researchers, such as M. Hoffmann et al. [3], stated that for better efficiency, simulations should
be conducted on a properly constructed model, referred to as a "foil" shape in their study. In the
work from 1997, S.K. Ong et al. [6] indicated that bend sequences can be examined in both "forward"
and "reversed" time directions, indicating that the "reversed" search offers substantial benefits over the
"forward" approach. L.J. de Vin et al. [1] attempted to reduce the search space by employing heuristic
rules in "reversed" simulation. J.C. Rico et al. [8] implemented a "forward" method of bending sequence
analysis. They decomposed a sheet metal part into a set of simpler ("basic") shapes, assuming that all
bends are aligned. Zhang Lichao et al. [5] reported promising results in "reversed" planning with the
graph search technique. Their method of bend sequencing is based on an improved A-star algorithm that
incorporates "hard precedence" constraints.

This study presents a simple method for selecting a feasible bending sequence and validating it through
a specifically designed simulation procedure. The initial CAD part is defined in the boundary represen-
tation (B-rep) form, which is communicated as a STEP file being the input of the discussed algorithm.
The part is then idealized into a hierarchically structured arrangement of flanges represented with sparse
surface triangulations.

The bend sequence search is guided by simulation. Our method aims at incrementally unfolding a part
by choosing a tuple of "final" bends on each iteration. The selected "final" bends are unfolded, and the
procedure repeats until the part becomes flat or no "final" bends can be selected. The simulation continues
frame by frame, with collision detection performed at each intermediate folded state of the geometry. The
collision detector checks for self-intersections of the folded geometry and examines possible collisions with
the geometries of punches. The simulation algorithm is data-driven in the sense that the system takes
punch definitions from an external database. As a result, a technologist may add the available tools to
the simulator and this way improve its accuracy.

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 255-260
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

256

1

f.24
f.1

f.27

f.49

f.42

f.16

f.40

f.37

f.4

2

3

4

5
6

7

8

9

f.6

(a) (b)

Fig. 1: An example of a folded sheet metal part (a). An example of an "infeasible" folded sheet metal
part with all bends and flange faces numbered (b).

Feature Recognition:
Folded sheet metal parts (Fig. 1a) are often communicated without features and therefore require pre-
processing for recovering the information about flanges, bends, and, more importantly, bend properties.

The employed feature recognition approach starts from an automatically selected "seed" face and
propagates over the smoothly connected bend faces until a side of a sheet metal part ends up entirely
visited. One simple heuristic is that the planar face with the maximum bounded area can be chosen as
a seed face. Another rule proposed by A. Salem et al. [9] defines the seed face as the "most adjacent" to
other faces. The key outcome of the recognition process is the attributed adjacency graph G [4] enriched
with the information about features as specific "labels" associated with its nodes. Our recognition
algorithm uses ideas similar to what has been published by Yang et al. [11], although it was developed
independently.

Once all features are extracted, the properties of bends also become explicit, making it possible to
unfold a part. Unfolding is used to prepare the cutting contours of the blank sheet, so it has to maintain
high accuracy. The exact unfolding algorithm operates in a "one-shot" manner, meaning the flattening
transformations are calculated without simulating the folding process. This operator is called U in what
follows.

Bending Sequence Simulation Principles:
Let us consider a sheet metal part depicted in Fig. 1b. This part would not trigger any feasibility checks
if unfolding transformations are computed w.r.t. the U operator (i.e., "one-shot" unfolder). However, if
the geometry of punches is taken into account, there is no way to bend this part completely on a press
brake machine because of collisions with tools.

Therefore, we have to introduce a simulation-driven unfolding operator Us[S,B, α] that would capture
the manufacturability issues undetected by U. Here B is a set of all bends and α is the angular increment
for collision frames. The simulation model S is synthesized from the initial boundary representation of a
folded part and has the topology determined by the unfolding graph. The ultimate simulation framework
should employ both U and Us to extract as much information for manufacturing as possible.

For a part with n bends, the number of possible bend sequences N equals the number of permutations,
i.e., N = n!. All intermediate folded states of geometry can be represented with a graph model as depicted
in Fig. 2a. Iterating all possible paths in this graph is a computationally prohibitive task, especially taking
into account that each folded state of geometry needs to be checked for collisions.

R. Duflou [2] proposed problem-size reduction methods to "bring automatic manufacturability verifi-
cation a few steps closer to reality." According to him, a common approach in a traditional exhaustive
search strategy is to apply a backwards unfolding check that starts by identifying bends that can be

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 255-260
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

257

Algorithm 1 Find bending sequence

procedure FindSequence(S,B, α) ▷ Initial state S is with all flanges folded.
stop ← false ▷ Prepare iterations.
sequence ← ∅ ▷ Collected sequence.
processed ← ∅ ▷ Visited bends.
repeat

Γ ← ∅ ▷ All bends which are feasible on this iteration.
for b ⊂ B do ▷ Let’s collect all feasible bends for the current state of S.

if b ∈ processed then
continue

end if
if IsBendFeasible(b) then

Γ ← b
processed ← b

end if
end for
if Γ = ∅ then ▷ No feasible bend remains.

stop ← true
continue

end if
S ← Unfold(Γ, α) ▷ Unfold feasible bends.
sequence ← Γ

until !stop
return sequence

end procedure

24

40

42

27

49 37

16

1

6 4

24
split

40

42

27

49 37

16

1

6 4

(a) (b) (c)

Blank part

Finished part

......

...

12

12...8 12...79

13 19 89

1 2 3 4 5 6 7 8 9

Fig. 2: A graph representation of transitions between the folded states of geometry (a). The unfolding
tree of the sheet metal part depicted in Fig. 1b: (b) is the initial tree with face 24 as a base one; (c) is a
topological split over a bend line between faces 40 and 24.

performed as final ones in the process plan. For the "infeasible" part depicted in Fig. 1b, it requires only
n iterations to conclude that the part is infeasible because no bend can be regarded as a final one.

The Algorithm 1 progressively identifies all bends that can be regarded as "last" ones to obtain the
next intermediate folded state of geometry S := S. All feasible bends are reported in a single group and
unfolded to generate a new folded state. The process repeats until the part gets completely unfolded or
there remains no feasible bend to report. To conclude if the part is feasible, it is enough to ensure that
all bends were listed in the collected groups. In the worst case, the Algorithm 1 hunts down one "final"

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 255-260
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

258

Fig. 3: The initial folded state of the simulation model (on the left) and its topological split (see Fig. 2c)
over the bend 2 (on the right).

bend at each iteration, so it has to check (n) + (n− 1) + (n− 2) + ...+ 1 = n2−n
2 bends that yield O(n2)

complexity as the upper bound.
The Algorithm 1 aggregates not individual bend lines but groups Γj = {bj1 , bj2 , ...} of bend lines

considered "final" at each iteration. To determine the feasibility of a bend bi inside its group, it is checked
in isolation, disregarding the movement of other flanges caused by bends bk, k ̸= i. This simplification
enables rapid iteration throughout the combinatorial space of sequences, although it may occasionally
result in false positives. More exhaustive methods of exploring the search space, such as those reported by
M. Shpitalni and D. Saddan [10] may overcome the issue of false positives but will significantly increase
the computational complexity of the approach. Since we are interested in "instant" manufacturability
checks, spending hundreds and even tens of seconds back-tracing the configuration graph (Fig. 2a) is not
an option.

Simulation model:
The simulation model S employed in collision testing must allow for quick isolation of "left" and "right"
flanges relative to the bend line where folding happens (Fig. 3). Due to the need to verify numerous
folded states during simulation, it is essential that the generation of each intermediate folded state be done
with the highest computational efficiency possible. For collision testing, sparse mesh representations are
favored in the simulation model. The simulation model is synthesized from the topology of the unfolding
tree and the boundary representation of the part.

Fig. 2b illustrates the unfolding tree for the "infeasible" part depicted in Fig. 1b. The numerical
identifiers of the graph nodes are equal to the indices of the corresponding CAD faces assigned by a
topological iterator. All bend faces are eliminated from the graph, although their indices are stored in
the graph edges.

Some elements of the bending simulation framework are depicted in Fig. 4. The simulation model
allows for folding and unfolding with respect to the specific bend line (Fig. 4a,b). Each pair of flanges
gets an associated hierarchy of collision boxes, making it possible to identify self-collisions over the part
(Fig. 4c). If punch tools are loaded, then their presence is also captured by the corresponding collision
boxes (Fig. 4d).

D. Raj Prasanth and M.S. Shunmugam [7] empirically demonstrated that efficient collision detection
for the simulation of folding may be achieved by hierarchies of axis-aligned bounding boxes (AABB).
AABB-based collision detection generally outperforms that of tighter volume decompositions utilizing
oriented bounding boxes (OBB). Consequently, our methodology utilizes AABB-based bounding volume
hierarchies with the surface area heuristic (SAH) as a criterion for volume partitioning.

Conclusions:
Incorporating the bending sequence detector into a widely used Manufacturing-as-a-Service (MaaS) plat-

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 255-260
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

259

Fig. 4: Some elements of bending simulation with (c,d) and without (a,b) collision testing.

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

0 50 100 150 200 250 300 350 400 450 500 550 600 650 700 750 800 850 900 950 1000

E
la

p
s
e
d
 t

im
e
 [

s
e
c
]

Test case

Fig. 5: Simulation time over 950 test cases of realistic sheet metal parts. The tests were conducted on a
personal laptop with Intel(R) Core(TM) i7-10870H CPU @ 2.20GHz, 32GiB RAM, Windows 10 x64.

form demonstrated that the proposed method can swiftly detect bending issues, offering "instant" feed-
back for real-life sheet metal parts with numerous bend features. Typically, the simulator does not need
to show high precision, and the material distortion on folding can be simplified by rotating the "left" and
"right" sides of a model around a bending axis. Nevertheless, in specific cases, false-positive collisions may
be reported due to the algorithm’s inability to account for k-factor values at bends. This behavior can
be improved by substituting the rotation transformation with a more complex movement of the flanges
on folding.

Let Fa = {0, 1} be the actual feasibility indicator (0 for infeasible, 1 for feasible) and Fs = {0, 1} be
the simulated feasibility indicator. Then the accuracy of the simulation can be measured as ρ =

∑
i ρi

M ,
where M is the number of test cases and ρi is a per-case accuracy:

ρi =

{
1 Fs = Fa

0 otherwise

We employed this formal metric to analyze all sheet metal parts that have been identified as "infeasi-
ble" to verify the correctness of the simulation. Some examples of parts that yield Fs = 0 can be found
in the full-text version of the paper.

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 255-260
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net

260

The algorithm’s main performance bottleneck (Fig. 5) is discovered for perforated sheet metal parts,
as their simulation models comprise hundreds to thousands of triangles. These problems can be resolved
through appropriate defeaturing of the flanges, as the presence of small holes and cutouts has no impact
on the selection of a bending sequence.

References:
[1] de Vin, L.; de Vries, J.; Streppel, A.; Klaassen, E.; Kals, H.: The generation of bending sequences

in a capp system for sheet-metal components. Journal of Materials Processing Technology, 41(3),
331–339, 1994. ISSN 0924-0136. http://doi.org/10.1016/0924-0136(94)90169-4.

[2] Duflou, J.: Design verification for bent sheet metal parts: A graphs approach. International Trans-
actions in Operational Research, 4(1), 67–73, 1997. http://doi.org/10.1111/j.1475-3995.1997.
tb00063.x.

[3] Hoffmann, M.; Geißler, U.; Geiger, M.: Computer-aided generation of bending sequences for die-
bending machines. Journal of Materials Processing Technology, 30(1), 1–12, 1992. ISSN 0924-0136.
http://doi.org/10.1016/0924-0136(92)90035-Q.

[4] Joshi, S.; Chang, T.: Graph-based heuristics for recognition of machined features from a 3d solid
model. Computer-Aided Design, 20(2), 58–66, 1988. ISSN 0010-4485. http://doi.org/10.1016/
0010-4485(88)90050-4.

[5] Lichao, Z.; Yi, Z.; Qiang, Z.; Fafu, H.: Robust sheet metal bend sequencing method based on
A-star algorithm. In 2011 IEEE International Conference on Computer Science and Automation
Engineering, vol. 2, 711–715, 2011. http://doi.org/10.1109/CSAE.2011.5952603.

[6] Ong, S.; De Vin, L.; Nee, A.; Kals, H.: Fuzzy set theory applied to bend sequencing for sheet
metal bending. Journal of Materials Processing Technology, 69(1), 29–36, 1997. ISSN 0924-0136.
http://doi.org/10.1016/S0924-0136(96)00035-0.

[7] Prasanth, D.R.; Shunmugam, M.S.: Collision detection during planning for sheet metal bending by
bounding volume hierarchy approaches. International Journal of Computer Integrated Manufactur-
ing, 31(9), 893–906, 2018. http://doi.org/10.1080/0951192X.2018.1466394.

[8] Rico, J.C.; Gonzalez, J.M.; Mateos, S.; Cuesta, E.; Valino, G.: Automatic determination of bending
sequences for sheet metal parts with parallel bends. International Journal of Production Research,
41(14), 3273–3299, 2003. http://doi.org/10.1080/0020754031000095158.

[9] Salem, A.; Abdelmaguid, T.F.; Wifi, A.S.; Elmokadem, A.: Towards an efficient process planning
of the v-bending process: an enhanced automated feature recognition system. The International
Journal of Advanced Manufacturing Technology, 91, 4163 – 4181, 2017. http://doi.org/10.1007/
s00170-017-0104-9.

[10] Shpitalni, M.; Saddan, D.: Automatic determination of bending sequence in sheet metal products.
CIRP Annals, 43(1), 23–26, 1994. ISSN 0007-8506. http://doi.org/10.1016/S0007-8506(07)
62155-6.

[11] Yang, Y.; Hinduja, S.; Owodunni, O.O.; Heinemann, R.: Recognition of features in sheet metal parts
manufactured using progressive dies. Computer-Aided Design, 134, 102991, 2021. ISSN 0010-4485.
http://doi.org/10.1016/j.cad.2021.102991.

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 255-260
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://doi.org/10.1016/0924-0136(94)90169-4
http://doi.org/10.1111/j.1475-3995.1997.tb00063.x
http://doi.org/10.1111/j.1475-3995.1997.tb00063.x
http://doi.org/10.1016/0924-0136(92)90035-Q
http://doi.org/10.1016/0010-4485(88)90050-4
http://doi.org/10.1016/0010-4485(88)90050-4
http://doi.org/10.1109/CSAE.2011.5952603
http://doi.org/10.1016/S0924-0136(96)00035-0
http://doi.org/10.1080/0951192X.2018.1466394
http://doi.org/10.1080/0020754031000095158
http://doi.org/10.1007/s00170-017-0104-9
http://doi.org/10.1007/s00170-017-0104-9
http://doi.org/10.1016/S0007-8506(07)62155-6
http://doi.org/10.1016/S0007-8506(07)62155-6
http://doi.org/10.1016/j.cad.2021.102991
http://www.cad-conference.net

