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Introduction: 

Additive manufacturing (AM), a pivotal element of Industry 4.0, enables the fabrication of intricate 
structures through the layer-by-layer accumulation of materials. This procedure has specific benefits, 
such as the creation of intricate surfaces, the shaping of composite materials, the execution of integrated 
assembly, and the acceleration of manufacturing. AM has rapidly advanced in multiple industries, 
including aerospace, construction, medical technology, and automotive manufacturing. However, 
conventional cloud manufacturing has faced various hurdles, such as integrating resources across 
businesses, unified planning, and managing substantial volumes. The challenges encompass the lack of 
smooth access to diverse resources, excessive system load, and significant reliance on the cloud for the 
manufacturing process, which impedes the advancement of comprehensive product lifecycle 
management[1-3].  

The advent of cloud-edge collaborative manufacturing has initiated a paradigm change by enabling 
the integration of cloud and edge computing through digital technologies such as the Internet of Things, 
digital twins (DTs), and big data processing. Cloud manufacturing is a service-centric manufacturing 
paradigm integrating the Industrial Internet of Things, facilitating on-demand access to a diverse array 
of configurable manufacturing services in the cloud under defined parameters and enhancing data 
traceability accuracy[4-6]. As shown in Fig.1, the lifespan of an additively made object comprises three 
phases: Design, Manufacturing, and Traceability. The three stages of data can interact with each other. 
A consolidated platform is established to oversee these steps, and once testing is completed, the data 
from the product manufacturing process may be tracked. The amalgamation of cloud-based 
manufacturing technologies and DTs can surmount the constraints imposed by data boundaries. The 
digital twin (DT) facilitates the validation of manufacturing parameters, forecasts manufacturing 
processes, and implements closed-loop lifecycle management. At the same time, the incidence of quality 
concerns due to human factors is markedly diminished. Integrating DT technology and deep learning 
has resulted in substantial advancements in the simulation and optimization of industrial processes. 
These advancements have been realized through the aggregation of state data and the promotion of 
cloud-based collaborative manufacturing. This advancement has resulted in more efficient, adaptable, 
and cost-effective production processes. Moreover, these advancements provide an innovative 
resolution for contemporary production[7-9]. Fig.2 illustrates the DT of the AM process. The imported 
CAD model undergoes a slicing procedure. Finite element analysis is employed to get material 
characterization data during the material processing step. The process parameters are verified using 
virtualized manufacturing, and the actual process flow is verified using semi-virtualized manufacturing. 
Relevant data is then collected. The virtualized manufacturing process is simulated at the DT platform, 
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while semi-virtualized manufacturing is executed by connecting the DT platform to the physical entity 
equipment. During the concluding phase of production, the product is subjected to stringent testing to 
evaluate its tensile strength, flexibility, and adherence to design standards. Only items that meet these 
rigorous tests are considered appropriate for qualified products. 
 

 
 

Fig. 1: AM product cycles. 
 

 
 

Fig. 2: DT AM processes. 
 

Main Idea: 

This paper examines the shortcomings of current DT systems in AM, explicitly focusing on migration 
capabilities and comprehensive lifecycle management. The proposed framework is a DT that manages 
the complete lifecycle of composite AM, utilizing cloud-edge collaboration. The framework encompasses 
three essential domains: design, manufacturing, and traceability. Integrating cloud management with 
edge computing resources facilitates efficient data interaction and processing, enhancing system 
adaptability and migration capabilities. Fig. 3 illustrates the life cycle management framework for 
composite AM. This approach utilizes a DT-driven manufacturing model supported by a cloud 
manufacturing management framework that includes five components: cloud management, material 
handling, Virtualized manufacturing, semi-virtualized manufacturing, and tensile testing. The cloud is 
categorized into client and server components within this framework. The client manages the 
manufacturing process in a unified manner, whereas the server is the principal repository for 
manufacturing data. Finite element analysis was employed in material handling to predict tensile 
strength. Virtualized Manufacturing is a process that simulates the product manufacturing process and 
verifies the manufacturing accuracy of the slicing parameters. The manufacturing of actual products is 
performed in a semi-virtualized manner, and tensile testing is conducted to ascertain the compliance of 
products from the same batch. The present study involves the aggregation of virtualized and semi-
virtualized manufacturing data. The manufacturing data of virtualization and semi-virtualization are 
collected, and the manufacturing data are identified using the long short-term memory (LSTM) deep 
learning algorithm. This allows for the rapid identification of defects in the manufacturing product and 
the realization of traceability in the manufacturing data. For illustration, consider the DT model 
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developed for carbon fiber-reinforced material products. This model was developed based on two 
fundamental concepts: the multi-coupling of AM equipment in physical space and the virtual reality 
mapping method[10]. Secondly, establishing a unified cloud-based management platform is essential 
for the comprehensive digital support of the entire process. The comprehensive lifecycle management 
of additively manufactured products has enhanced product quality and decreased. 

 

 

 

Fig. 3: The life cycle management framework for composite AM. 

 

The session on manufacturing data traceability utilizes the LSTM algorithm to track both DT and 
physical manufacturing data. The LSTM memory cell consists of three gates: a forget gate, an input gate, 
and an output gate. The forgetting gate serves as the principal computational unit that dictates the 

degree of retention for long-term information C . The mathematical principle involves filtering 

irrelevant information by giving the incoming a weight between 0 and 1 C . From the previous time step. 

The input gate functions as the computational unit that assesses the degree of new information to be 

assimilated for later incorporation into long-term memory, referred to as 1tC . This technique is 

mathematically based on assigning a weight between 0 and 1 to all incoming information at a specific 
moment. This process entails systematically screening incoming information to integrate new elements 

into long-term memory selectively C . The variable tC  represents the cumulative amount of new 

information acquired at the present step. The output gate operates as a computing unit responsible for 

filtering short-term information th  from the newly obtained long-term information tC  to guarantee the 

optimal synchronization of the former with the current time step. The unit's mathematical foundations 

entail assigning a weight between 0 and 1 to the previously calculated long-term information tC , 

thereby enabling the selection of the most pertinent information for the present time step, which is 

subsequently employed for predictive purposes. In this system, long-term memory 1tC , short-term 

information 1th , and fresh information are at the current time step tX , and the projected value is at the 

current time step ty . Eqn. (1.1) illustrates the mathematical of LSTM. 

 1( [ , ] )t f t t ff W h X b  (1.1) 

 1( [ , ] )t i t t ii W h X b  

 1( [ , ] )t o t t oo W h X b  
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 1( [ , ] )t C t t CC tanhW h X b  

 1t t t t tC f C i C  

 ( )t t th o tanh C  

The input data for LSTM training is categorized into two types: virtualized manufacturing data and semi-
virtualized manufacturing data. The virtualized manufacturing dataset includes the position and speed 
information of the XYZBC axis motors, with labels of 0 and 1, where 0 denotes a normal state and 1 
indicates an abnormal condition. The semi-virtualized manufacturing dataset encompasses a broader 
range of sensor signals, including the position and speed of the physical XYZBC axis motors, vibration 
angles, velocities, displacements of the extruder along the XYZ axes, motor temperatures, and nozzle 
temperatures. This dataset is similarly labeled, with 0 representing normal operation and 1 indicating 
the presence of anomalies. Abnormal data is synthetically generated by introducing artificial faults to 
simulate defective conditions. Across both datasets, normal instances constitute 70% of the samples, 
while abnormal instances account for the remaining 30%. The combined dataset is randomly split into 
training and testing subsets, with 80% allocated for training and 20% reserved for testing. 

When new data is entered into the trained LSTM model, the predicted probability p  is the model's 
positive class probability. Anomaly scores are calculated using a confidence level 

( ,1 )confidence max p p , and thresholds are updated based on recent data distribution using a sliding 

window method. Maintain a fixed-size window, for example, with a confidence level of 5 samples 5n . 
After entering new data, the current sample's score is added to the window, and the oldest data is 

removed. The position index ( 1) wk n p  must be calculated using the threshold calculation, which is 

the median of the window wp . This is often taken as 0.95 in industrial anomaly detection. The final 

threshold value is calculated using linear interpolation. Here's the interpolation formula 

1( )p i i iQ X f X X : the integer part of linear interpolation i k , the decimal part is f k i  the 

window data i  after the update iX  and the final anomaly threshold 
wp

Q . If the score exceeds the 

threshold, there is a defect in the product's manufacturing. 

Conclusions: 

This paper presents a DT designed to manage the complete lifecycle of additively manufactured 
composite materials through cloud-based collaboration. Integrating cloud management and edge 
computing resources within the framework facilitates efficient data interaction and processing across 
the three main domains of design, manufacturing, and traceability, enhancing the system's adaptability 
and migration capabilities. Experimental validation with carbon fiber-reinforced nylon demonstrates 
that the proposed framework enhances manufacturing efficiency, improves product quality, and lowers 
manufacturing costs. The study results indicate that DT drive cloud edge collaborative manufacturing 
can enhance smart manufacturing and offer innovative, practical solutions in the AM of composite 
materials. 
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