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Introduction: 
Generative design (GD) is an innovative design methodology that leverages computational algorithms to 
autonomously create, analyze, and optimize design solutions [4].Unlike traditional approaches that rely 
on manual iteration and designer expertise, GD explores extensive solution spaces to discover innovative 
configurations that may not be apparent to a human designer. By defining design parameters and 
optimization objectives, generative algorithms systematically generate a diverse range of feasible 
solutions, evaluate their performance based on predefined criteria, and iteratively refine them to achieve 
optimal design outcomes. This makes GD especially effective in addressing complex, performance-
driven design challenges where conflicting objectives must be balanced. This has made GD particularly 
valuable in industries such as aerospace, automotive, architecture, and healthcare, where highly 
optimized and efficient solutions are essential. When integrated with modern CAD tools, GD becomes 
even more powerful by enabling parametric modeling, real-time visualization, and streamlined iteration, 
which significantly accelerates the design process and reduces development costs. At the core, GD relies 
on advanced optimization algorithms, particularly multi-objective optimization algorithms (MOOAs), 
which are essential for solving problems with competing goals. Most existing studies on MOOAs in GD 
use synthetic benchmarks, limiting insights into their real-world applicability [3], [4]. This paper 
evaluates three MOOAs, MOEA/D, NSGA-III, and RBFMOpt, in the practical context of custom dental 
abutments requiring patient-specific geometry, biomechanical stability, and manufacturing feasibility. 
We analyze algorithm performance concerning geometric objectives, convergence, computational 
efficiency, and precision to advance GD for industrial-scale customization. The paper is organized as 
follows: Section 2 introduces selected algorithms; Section 3 details the methodology; Section 4 presents 
results; Section 5 provides a discussion, and Section 6 concludes with key findings and future directions. 

MOOAs in GD: 
To provide a representative and methodologically balanced comparison, we selected three algorithms: 
Multi-Objective Evolutionary Algorithm based on Decomposition (MOEA/D), Non-Dominated Sorting 
Genetic Algorithm III (NSGA-III), and Radial Basis Function Multi-Objective Optimization (RBFMOpt). Each 
is drawn from one of the three primary categories of multi-objective optimization strategies: 
decomposition-based, Pareto-based, and surrogate-assisted [9]. In addition to their methodological 
diversity, all three algorithms are readily available to designers through Grasshopper plugins (a visual 
programming environment integrated with Rhino3D, commonly used for parametric and generative 
design), making them accessible for practical use in CAD-integrated generative design workflows. This 
combination of methodological diversity and tool availability ensures a relevant and meaningful 
performance comparison.  
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MOEA/D approaches multi-objective optimization by decomposing the problem into numerous single-
objective subproblems [11]. Each subproblem represents a specific trade-off between objectives, 
determined by a weight vector. The combined solutions of these subproblems construct the Pareto front, 
a set of optimal trade-offs where no objective can be improved without negatively affecting at least one 
other objective. For implementation on a parametric model, the first step involves defining the model’s 
parameters as design variables with specified ranges. The optimization process begins when the 
algorithm generates a set of weight vectors that represent the relative importance of each objective in 
the first generation of variations. A population of initial solutions is created by randomly assigning 
values to the parameters within defined ranges. Each design is evaluated based on a scalarized fitness 
value, which combines the weighted objectives. Solutions are then grouped based on their weight 
vectors, allowing interaction and influence among nearby subproblems. Genetic operators, such as 
mutation and crossover, are used to evolve the population iteratively with a trend of replacing weaker 
solutions with stronger ones. In contrast, NSGA-III approaches the task holistically, treating the 
objectives as a unified whole. The NSGA-III builds on the principles of non-dominated sorting and 
incorporates a reference-point-based strategy to address high-dimensional objective spaces effectively 
[8]. Each design is evaluated based on multiple objectives, and the population is ranked into fronts using 
a non-dominated sorting mechanism. The first front contains the non-dominated solutions, while 
subsequent fronts consist of solutions dominated by the previous ones. NSGA-III enhances diversity 
preservation by introducing a set of predefined or adaptive reference points that guide the selection of 
solutions, ensuring an even distribution across the Pareto front. Genetic operators, such as crossover 
and mutation, are applied to evolve the population, with diversity being maintained by aligning solutions 
to the closest reference points. While both MOEA/D and NSGA-III rely on evaluation of solution directly 
using the true objective functions, RBFMOpt [5] uses surrogate functions to approximate the objective 
space, significantly reducing computational costs. First, design variable and ranges are defined, followed 
by generating an initial sample of designs that form the training data for the surrogate model. This 
surrogate model predicts the performance of new candidate solutions, focusing on promising regions 
of the design space, thereby reducing the number of expensive function evaluations. In each iteration, 
the most promising candidates are selected for true evaluation, and the resulting data are used to update 
the surrogate model.  

Methodology: 
Building a parametric model is essential as it allows for flexibility, automation, and efficient 
optimization by enabling systematic modifications to design parameters without manually 
reconstructing the geometry. In this study, a parametric model for custom dental abutments was 
developed using Rhino3D in combination with Grasshopper, leveraging visual programming and 
multiple GD plugins to facilitate design exploration and optimization. In general, the design of an 
abutment includes an implant connection interface (ICS), designed for a specific dental implant system 
within the bone, as well as two personalized segments: the transgingival segment (TS) and the prosthetic 
connection segment (PCS) (Fig. 1). TS extends through the gingival tissue, creating a seal that 
accommodates the unique emergence profile determined by individual gingival contours and implant 
placement. The PCS supports the final crown or bridge by transferring functional loads to the implant. 
Its geometry is influenced by factors such as implant angulation, distance to the opposing jaw, proximity 
to adjacent teeth, and the material selected for the restoration. Since the personalization of the 
abutment is carried out on the TS and PCS, the primary focus of the parametric model in this study is 
on these two segments. The transgingival segment is shaped based on four prosthetic surfaces (Fig. 1, 
right): distal (D), mesial (M), buccal (B), and oral (O) [1].  

For each prosthetic surface, a single point is defined at the intersection of the surface centerline 
with the tissue, forming a reference point for gingival margin curve approximation. Consequently, the 
area between the ICS and the gingival margin defines the TS in this parametric model. Each point is 
described with two parameters, distance from ICS axis (Yd, Ym, Xo, Xb) and height distance (Zd, Zm, Zo, Zb) 
from the abutment interface, meaning TS contains eight modifiable parameters (Fig. 2). The shape of the 
PCS follows the gingival margin and is created as an extrusion of a curve offset toward the abutment 
axis from the gingival margin. The direction and length of the extrusion are determined by the position 
of the PCS axis, which is adjusted to accommodate the implant's placement angle and the position of 
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the opposing jaw. Therefore, the PCS is described using three parameters: angulation around the X-axis 
(Ax), angulation around the Y-axis (Ay), and the height of the segment (H) (Fig. 2). 

 

    
 

Fig. 1: Dental abutment (left); Prosthetics and tissue surfaces (right). 

 

 
 

Fig. 2: Abutment design parameters. 

Together, these eleven parameters serve as the input variables to which GD algorithms were applied. GD 
algorithms were implemented using Opossum (MOEA/D and RBFMOpt) and Tunny (NSGA-III) 
Grasshopper plugins. Since the algorithms are designed to optimize objective functions (either by 
minimizing or maximizing them), specific control points were integrated into the patient’s jaw scan 
(captured using an intraoral scanner), with each point representing a distinct objective. The objectives 
are: O1 – minimizing distance from point D on TS to jaw scan distal point, O2 - minimizing distance 
from point B on TS to jaw scan buccal point, O3 - minimizing distance from point M on TS to jaw scan 
mesial point, O4 - minimizing distance from point O on TS to jaw scan oral point and O5 – minimizing 
distance of abutment’s PCS apex to opposite jaw influenced by angulation and height of PCS. Each 
algorithm is then compared based on simulation time, error per objective, and convergence rate [3]. 
Simulation time is crucial for practical design workflows and real-time feedback, while error per 
objective quantifies how accurately each solution aligns with the patient’s anatomical requirements and 
indicates the algorithm’s convergence behavior. The simulations were conducted for each algorithm 
under two scenarios, 500 and 1,500 design solutions, following recommendations from previous studies 
[10]. The simulations were performed on a workstation equipped with an AMD Ryzen 7 5700G CPU, 32 
GB of RAM, and an NVIDIA RTX 4060 Ti GPU. 

Results and discussion: 
Tab. 1 presents a comparison of simulation time and minimal error per objective for each algorithm, 
highlighting their computational efficiency and accuracy.  
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Algorithm 
(solutions) 

Time 
[min] 

MIN error O1 
[mm] 

MIN error O2 
[mm] 

MIN error O3 
[mm] 

MIN error O4 
[mm] 

MIN error O5 
[mm] 

MOAE/D (500) 04:40 0,385 0,222 0,596 0,254 1,316 
MOAE/D (1500) 10:08 0,475 0,523 0,645 0,176 1,054 
NSGA-III (500) 09:30 0,497 0,030 0,041 0,479 0,263 

NSGA-III (1500) 26:28 0,378 0,042 0,029 0,073 0,091 
RBFMOpt (500) 05:40 0,371 0,046 0,044 0,039 0,100 
RBFMOpt (1500) 45:20 0,37 0,027 0,000 0,027 0,002 

 

 
Tab. 1: Simulation time and minimal errors per objective. 

 
The comparison of the three algorithms, RBFMOpt, NSGA-III, and MOEA/D, reveals distinct strengths 
and weaknesses across different numbers of design solutions. According to Tab. 1, in the 500-solution 
session, MOEA/D completes the simulation the fastest, while NSGA-III takes the longest. This variation 
in simulation time is closely linked to the computational complexity of each algorithm. MOEA/D’s 
decomposition-based approach allows for rapid solution processing, at a cost of lower accuracy, as it 
struggles to fully explore the Pareto front within a limited number of iterations [11]. In contrast, NSGA-
III, which relies on non-dominated sorting and reference-point distribution, requires more 
computational effort to ensure convergence across objectives, leading to a longer runtime [5]. When 
comparing simulation time, MOEA/D, delivers the fastest but least accurate results across the defined 
objectives. NSGA-III achieves better solutions but still exhibits significant deviations in three out of five 
objectives, indicating that 500 solutions are insufficient for full convergence. This is particularly evident 
when results are compared to the 1,500-solution session, where NSGA-III shows substantial 
improvements across all objectives, whereas MOEA/D exhibits minimal progress, reinforcing the idea 
that the decomposition approach and weight vector distribution limit its performance. The increase in 
simulation time for NSGA-III is thus justified, allowing the algorithm to better refine solutions and more 
effectively distribute solutions across the Pareto front [7]. RBFMOpt consistently achieves the fastest 
convergence and the highest accuracy, exhibiting the smallest deviations across all objectives when the 
solution count is relatively low (500), a direct result of its surrogate modeling approach. By leveraging 
radial basis functions, RBFMOpt efficiently explores high-potential regions of the design space, 
minimizing the number of evaluations and achieving superior solutions with fewer evaluations [6]. As 
the number of solutions increases to 1,500, RBFMOpt continues to improve by minimizing objective 
errors outperforming both MOEA/D and NSGA-III. This improvement, however, comes at a steep increase 
of simulation duration (from 05:40 to 45:20 min), highlighting a key trade-off between computational 
efficiency and accuracy.  

Fig. 3 visualizes the objective errors for the final top five solutions (S1–S5), illustrating the 
distribution of errors across different objectives and providing insights into the stability, precision, and 
trade-offs between accuracy and computational cost for each algorithm. Upon examining the diagram, 
it is evident that MOEA/D exhibits significant deviations in solutions across the Pareto front in the 500-
solution session. This is particularly pronounced in O1, O2, O4, and O5, where the error deviation within 
the selected solutions remains higher. The largest discrepancies are observed in O5, which also has the 
highest errors overall. This suggests that MOEA/D struggles to maintain consistency in the distribution 
of solutions, likely due to its decomposition approach. If the weight vectors are not well distributed or 
properly tuned, the algorithm may fail to generate a balanced set of trade-offs, leading to uneven 
solution quality across the Pareto front [7]. In contrast, NSGA-III demonstrates more stable solutions, as 
the differences between the maximum and minimum errors across objectives are smaller. This indicates 
that NSGA-III, even in the 500-solution session, is able to maintain better consistency across its 
recommended solutions, ensuring that extracted Pareto-optimal solutions are closer to one another in 
terms of accuracy [2]. RBFMOpt provides the most stable solutions, with minimal differences in errors 
across all objectives among the top five extracted solutions. This result suggests that the surrogate 
approach of RBFMOpt allows for precise refinement of solutions, consistently narrowing down 
promising regions of the solution space [10].  
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Fig. 3: Errors per objective after 500 solutions. 

It is also important to note that O5 is directly influenced by three parameters, making it the most 
complex objective with the highest number of possible parameter combinations. This complexity 
increases the challenge for algorithms to efficiently converge on an optimal solution, particularly those 
like MOEA/D that are more sensitive to parameter distributions and require extensive tuning.  

The abutments shown in Fig. 4 visually reflect the previously identified objective errors, with the 
most pronounced differences observed in the PCS (O5), as confirmed by the results in Tab. 1 and Fig. 3. 
The variation in PCS geometry highlights the discrepancies in how each algorithm optimizes this 
objective, further emphasizing the challenges associated with its complexity. Additionally, RBFMOpt is 
the only algorithm that satisfies the functional requirement of ensuring that the TS maintains 
continuous contact with the gingival margin on all reference surfaces.  

 

   
 

Fig. 4: Generated abutment by each algorithm in session with 500 solutions (MOAE/D – left; NSGA-III – 
middle; RBFMOpt – right). 

Conclusions: 

This study compared the performance of three MOOAs, MOEA/D, NSGA-III, and RBFMOpt, applied to the 
generative design of custom dental abutments. The results indicate that each algorithm exhibits unique 
strengths and limitations, with trade-offs between accuracy, computational efficiency, and solution 
diversity, depending on the optimization scenario. MOEA/D, while computationally efficient, exhibited 
slower convergence and higher deviations of objective errors, particularly in high-dimensional objectives 
like O5. NSGA-III, despite requiring longer processing times, significantly improved its performance as 
the number of solutions increased, demonstrating the benefits of reference-point-based diversity 
preservation. RBFMOpt consistently demonstrated the fastest convergence rate and achieved the lowest 
objective errors across all evaluations. The study also raises the question of whether RBFMOpt’s higher 
computational burden is always necessary to achieve acceptable solutions. In time-sensitive design 
workflows or computationally constrained environments, early-stage convergence may be sufficient, 
eliminating the need for extended simulations. Conversely, in cases requiring high precision or complex 
interactions between multiple parameters, increasing the number of solutions may be justified despite 
the longer simulation time.  Comparison of the top five solutions per algorithm reveals that, from a user 
perspective, particularly for those with limited experience in interpreting optimization results, RBFMOpt 
offers the most reliable and least error-prone solutions. All five of its best solutions exhibit minimal 
variation (0.061–0.153 mm), meaning that any recommended outcome from the Pareto front is likely to 
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be an acceptable final choice. This consistency makes RBFMOpt particularly well-suited for practical 
industrial applications, where minimizing decision-making complexity is beneficial.  However, the study 
is subject to certain limitations. The evaluation was conducted using only three optimization algorithms, 
which, while representative of different methodological categories, does not encompass the full range 
of available approaches in generative design. Additionally, the study was performed using a single set 
of computational tools, specifically Rhino3D and Grasshopper, along with their respective optimization 
plugins. As different software environments and solver implementations can influence performance, 
further research should expand the analysis to a broader range of algorithms and tools to ensure more 
generalized conclusions.  Future work could explore hybrid optimization strategies, combining the 
efficiency of surrogate-assisted modeling** with the diversity preservation of reference-point-based 
approaches, ensuring optimal trade-offs between computational cost, solution accuracy, and practical 
usability in generative design workflows. 
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