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Introduction:

In the ever-evolving �elds of computer graphics and geometric modeling, the ability to classify, analyze,
and transform free-form curves is a cornerstone of innovation, driving advancements across digital design,
animation, and manufacturing. It has been a trend for researchers to modify Bezier curves for extra shape
control using trigonometric functions and special functions, e.g.,Trigo-Bezier curves [2] and H-Bezier [3]
& C-Bezier([4, 5]. Event though these curves have better control and can exactly represent of conic
sections, they cannot be directly used in existing CAD/CAM systems due to thier special blending
functions. The �rst part of this work explores the patterns of ratio property using Shape Uniqueness
Theorem (SUT) [6] for Bezier, Rational Bezier and Ball curves. The second part leverages the SUT
approach to establish a uni�ed framework for curve conversion with constant ratios. To showcase its
practicality, we implement the proposed method for quadratic C-Bezier conversion into Rational Bezier
curves. The ratio-driven methodology bridges the gap between various curve types. It unlocks new
possibilities for their transformation and application, reshaping how curves are understood and utilized
in modern computational design.

Next section introduces the Shape Uniqueness Theorem (SUT) and its fundamentals, as established
by Miura et al. [6]. Using SUT we establish the ratio properties of Bezier, Rational Bezier, and Ball [7]
curves. It is followed by the conversion of quadratic C-Bezier curves to rational Bezier curves of degree
two, elucidating the corresponding conic section formed based on chosen shape parameter value before
concluding this work.

Shape Uniqueness Theorem (SUT)

Theorem 1. The shape of the curve C(t) de�ned by three control points P0, P1, P2 is determined by the
constant β exclusively and does not depend on the basis functions u(t), v(t), w(t) used to de�ne the curve.
[6, 8]
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Reader are referred to proof shown in [6]. Let C(t) de�ned as follows for 0 ≤ t ≤ 1:

C(t) = u(t)P0 + v(t)P1 + w(t)P2 (2.1)

where the following conditions hold:

1. 0 ≤ w(t) ≤ 1

2. 0 ≤ v(t) ≤ 1

3. u(t) + v(t) + w(t) = 1

4. u(t) = w(1− t)

5. w(0) = 0

6. w(1) = 1

7. dw(t)
dt > 0 for 0 < t < 1

If there exists a ratio β for 0 ≤ t ≤ 1 such that

β =
v(t)2

u(t)w(t)
(2.2)

then the above theorem is satis�ed. It is evident from SUT that its control points does not contribute to
the ratio as shown in eqn (2.2).

Shape uniqueness theorem for Bezier curves:

Bezier curves are widely recognized for their precision and simplicity, making them a de facto standard
for CAD/CAM systems. Surprisingly, the ratios of its blending functions are constant.

De�nition 1: The general formula for the ratio property of Bezier curve for 1 ≤ i ≤ n − 1 can be

expressed as follows:

Rn
i =

(Bi,n)
2

(Bi−1,n) · (Bi+1,n)
=

(i+ 1).(n− i+ 1)

i(n− i)
(2.3)

Using (2.3), we can obtain ratio property for any Bezier degree. Table 1 shows the ratio values up to
degree 9.

Table 1: Ratio property of Bezier curve for di�erent degrees

Ratio
(B1,n)2

B0,nB2,n

(B2,n)2

B1,nB3,n

(B3,n)2

B2,nB4,n

(B4,n)2

B3,nB5,n

(B5,n)2

B4,nB6,n

(B6,n)2

B5,nB7,n

(B7,n)2

B6,nB8,n

(B8,n)2

B7,nB9,n

Terms Rn
1 Rn

2 Rn
3 Rn

4 Rn
5 Rn

6 Rn
7 Rn

8

n = 2 4
n = 3 3/1 3/1
n = 4 8/3 9/4 8/3
n = 5 5/2 6/3 6/3 5/2
n = 6 12/5 15/8 16/9 15/8 12/5
n = 7 7/3 9/5 5/3 5/3 9/5 7/3
n = 8 16/7 7/4 8/5 25/16 8/5 7/4 16/7
n = 9 9/4 12/7 14/9 3/2 3/2 14/9 12/7 9/4
.
.
.

By deduction, the following ratio properties of Bezier's blengin function can be obtained:
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1. Symmetry: For all degrees n, the sequence of ratios is symmetric Rn
i = Rn

n−i for all i ∈ {1, . . . , n−
1}.

2. First and last term: Rn
1 = Rn

n−1 =

{
2k+1

k , if n is odd, where k = n−1
2 ,

4k
2k−1 , if n is even, where k = n

2 .

3. Central terms:

{
Rn

n−1
2

= Rn
n+1
2

. if n is odd

Rn
n
2

is unique. if n is even.

4. Sequence length: The sequence {Rn
i } contains exactly n− 1 terms.

Shape uniqueness theorem for Ball curves:

Ball curve [7] known for its computational e�ciency when it comes to degree reduction by coalescing
control points. Speci�cally, a generalized Ball curve of odd degree 2m + 1 reduces its degree to 2m
precisely when the centre two control points coincide (Pm = Pm+1). The Ball curve yields interesting
results when analyzed through the lens of SUT. The ratios are not constants, but replies on its parameter t.

De�nition 2: For 1 ≤ i ≤ n− 1, the general formula for the ratio property of Ball curve can be expressed

as follows:

Even degree, Rn
i :

(wi,n)
2

(wi−1,n)(wi+1,n)
=


(1− t)2, if i = n−2

2

4, if i = n
2

t2, if i = n+2
2

1, otherwise

Odd degree, Rn
i :

(wi,n)
2

(wi−1,n)(wi+1,n)
=



1− t, if i = n−3
2

2(1− t), if i = n−1
2

2t, if i = n+1
2

t, if i = n+3
2

1, for all other i

The ratio of Ball curves up to degree 9 is shown in Table 2:

Table 2: Ratio property of Ball curve for di�erent degrees

Ratio
(β1,n)

2

β0,nβ2,n

(β2,n)
2

β1,nβ3,n

(β3,n)
2

β2,nβ4,n

(β4,n)
2

β3,nβ5,n

(β5,n)
2

β4,nβ6,n

(β6,n)
2

β5,nβ7,n

(β7,n)
2

β6,nβ8,n

(β8,n)
2

β7,nβ9,n

Terms Rn
1 Rn

2 Rn
3 Rn

4 Rn
5 Rn

6 Rn
7 Rn

8

n = 3 2(1− t) 2t
n = 4 (1− t)2 4 t2

n = 5 1− t 2(1− t) 2t t
n = 6 1 (1− t)2 4 t2 1
n = 7 1 1− t 2(1− t) 2t t 1
n = 8 1 1 (1− t)2 4 t2 1 1
n = 9 1 1 (1− t) 2(1− t) 2t t 1 1
...

In a similar fashion, the Ball curve's ratio properties can be deduced as follows.
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1. Symmetry: For all degrees n, the sequence of ratios is symmetric. That is, Rn
i = Rn

n−i for i =

1, 2, . . . , n− 1.

2. Central Term: For even degrees (n = 4, 6, 8, ...), the central term is always 4.

3. Complementary Terms: For even degrees (n = 4, 6, 8, ...), the central term is always 4. The terms

equidistant from the center complement each other to form a polynomial in t:

� For odd degrees: (1− t) and t

� For even degrees: (1− t)2 and t2

4. Degree-Dependent Patterns:

� For n = 3: The terms are 2(1− t) and 2t.

� For n = 4: The terms are (1− t)2, 4, t2.

� For n ≥ 5: The sequence starts and ends with 1, and the middle terms follow a pattern based
on whether n is odd or even.

5. Increasing Stability: As the degree increases, more terms at the beginning and end of the sequence

become stable at 1.

Shape uniqueness theorem for Rational Bezier curves:

Rational Bezier curves not only extends the design capabilities of traditional quadratic Bezier curves
but also allows for complex shape manipulations through the incorporation of weights. Speci�cally, degree
two rational Bezier curve can represent various conic sections parabolas, hyperbolas, and ellipses based
on the relationship between the weights as shown in Eq. (2.4):

Conic =


Parabola, if w2

1 − w0.w2 = 0

Hyperbola, if w2
1 − w0.w2 > 0

Ellipse, if w2
1 − w0.w2 < 0.

(2.4)

For rational Bezier curves, the formula needs to account for the weights associated with each control
point. The general formula for the ratio property of rational Bezier curves can be expressed as follows:

De�nition 3: For 1 ≤ i ≤ n − 1, the general formula for the ratio property of Rational Bezier curve can

be expressed as follows:

Rn
i =

(Ri,n)
2

(Ri−1,n) · (Ri+1,n)
=

(i+ 1)(n− i+ 1)

i(n− i)
· w2

i

wi−1wi+1
(2.5)

By deduction, the similar properties of rational Bezier's ratio can be obtained, which is clearly shown in
the full paper.

Application of shape uniqueness theorem:

In this section, we will showcase the conversion of the C-Bezier curve to a rational quadratic Bezier
curve. Initially Zhang [4, 5] investigated cubic C-Bezier curves with one parameter α in the space
span{1, t, cos t, sin t}. Later, Chen and Wang [12] constructed a C-Bezier curve of degree n for the space
span{1, t, t2, t3, . . . , tn−2, cos t, sin t}, using an integral approach. These bases share the same properties
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as the Bernstein basis when the parameter α → 0. The blending functions for quadratic C-Bezier curve
are de�ned as:

u02(t) =
1− cos(α− t)

1− cosα
,

u12(t) =
1− cost− cos(α− t) + cosα

1− cosα
,

u22(t) =
1− cost

1− cosα
.

(2.6)

where α ∈ (0, t), t ∈ [0, α] and 0 < α ≤ π. From the SUT, the shape of C-Bezier can be directly converted
into rational quadratic Bezier curve for the same control points by equating their ratios, where {f0, f1, f2}
are the blending functions of quadratic rational Bezier curves (RHS) and {u02, u12, u22} are the blending
functions of C-Bezier curve de�ned in Eq. (2.6) (RHS):

f1(t)
2

f0(t).f2(t)
=

u12(t)
2

u02(t).u22(t)

∴ w1 = ±
√
w0

√
w2

√
cosα+ 1√
2

, w0w2 ̸= 0 (2.7)

The conic type depends on the selection of weight values where the term that classi�es the conic section
is : ∆ = w2

1 − w0w2 as shown in Eq. (2.4) Substituting for w1 in Eq. (2.6):

∆ =

(√
w0

√
w2

√
cosα+ 1√
2

)2

− w0w2 = w0w2

(
cosα− 1

2

)
(2.8)

The weights are always positive whereas (cos α − 1) < 0 for 0 < α ≤ π. Since ∆ is always negative,
the C-Bezier curve as an ellipse. We can solve Eq.(2.7) in terms of C-Bezier's shape parameter α as

α = cos−1
(

2w1
2

w0w2
− 1

)
. This equation can be used to directly generate C-Bezier curves with chosen

weight parameters.

Conclusions:

Shape Uniqueness Theorem has yielded a general pattern in the context of ratio properties for Bezier,
Rational Bezier and Ball curves. Using SUT, we successfully transformed quadratic C-Bezier curve into
rational quadratic Bezier form and it also aided in conic type identi�cation. This research opens avenues
for future studies in more non-polynomial curve types. By enhancing the theoretical understanding of
the ratios of free-form curve's blending function , this approach could derive advancements in curve and
surface modeling. Future work include devising a method to convert those curves with ratios in the form
of parameter t. It is also worth investing the ratios of Timmer curve[13] which does not satisfy convex
hull property.

Shahida Shahnawaz, https://orcid.org/0009-0008-2079-4801
R.U. Gobithaasan, https://orcid.org/0000-0003-3077-8772
Kenjiro T. Miura, https://orcid.org/0000-0001-9326-3130

References:

[1] Miura, K.T., Gobithaasan, R.U., Salvi, P. et al. κ-Curves: controlled local curvature extrema. Vis
Comput 38, 2723?2738 (2022). https://doi.org/10.1007/s00371-021-02149-8

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 211-216
© 2025 U-turn Press LLC, http://www.cad-conference.net

https://orcid.org/0009-0008-2079-4801
https://orcid.org/0000-0003-3077-8772
https://orcid.org/0000-0001-9326-3130
https://doi.org/10.1007/s00371-021-02149-8
http://www.cad-conference.net


216

[2] Bashir, U., and Ali, J. M. (2016). Rational cubic trigonometric Bezier curve with two shape parame-
ters. Computational and Applied Mathematics, 35, 285�300. https://doi.org/10.1007/s40314-014-0194-
z

[3] Xinqiang Qin, Gang Hu, Yang Yang, Guo Wei. "Construction of PH splines based
on H-Bezier curves", Applied Mathematics and Computation, 238, (2014): 460-467.
https://doi.org/10.1016/j.amc.2014.04.033

[4] Zhang, J. (1996). C-curves: an extension of cubic curves. Computer Aided Geometric Design, 13(3),
199-217.

[5] Zhang, J. (1997). Two di�erent forms of CB-splines. Computer aided geometric design, 14(1), 31-41.

[6] Miura, Kenjiro, et al. "Uniqueness theorem on the shape of free-form curves de�ned
by three control points." Computer-Aided Design and Applications 19.2 (2021): 293-305.
https://doi.org/10.14733/cadaps.2022.293-305

[7] Said, H. B. "A generalized Ball curve and its recursive algorithm." ACM Transactions on Graphics
(TOG) 8.4 (1989): 360-371. https://doi.org/10.1145/77269.77275

[8] Miura, Kenjiro T., et al. "Generalization of the Shape Uniqueness Theorem for Free-form Curves."
(2024). https://doi.org/10.14733/cadaps.2024.229-240.

[9] Farin, Gerald. Curves and surfaces for CAGD: a practical guide. Elsevier, 2001.

[10] Lanyin Sun and Fangming Su. "Application of C-Bezier and H-Bezier basis functions to numer-
ical solution of convection-di�usion equations." Boundary Value Problems, 2022(1), (2022), 66.
https://doi.org/10.1186/s13661-022-01647-5

[11] Mainar, E., Pena, J. M., & Sanchez-Reyes, J. (2001). Shape-preserving alternatives to the rational
Bezier model. Computer Aided Geometric Design, 18(1), 37�60.

[12] Qinyu Chen and Guozhao Wang. "A class of Bezier-like curves." Computer Aided Geometric Design,
20(1), (2003), 29-39. https://doi.org/10.1016/S0167-8396(03)00003-7

[13] R. Gobithaasan & Jamaludin Ali, Towards G2 curve design with Timmer Parametric Cubic, Inter-
national Conference on Computer Graphics, Imaging and Visualization (CGIV 2004), Pages 109 -
114, https://doi.org/10.1109/CGIV.2004.1323969

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 211-216
© 2025 U-turn Press LLC, http://www.cad-conference.net

https://doi.org/10.1007/s40314-014-0194-z
https://doi.org/10.1007/s40314-014-0194-z
https://doi.org/10.1016/j.amc.2014.04.033
https://doi.org/10.14733/cadaps.2022.293-305
https://doi.org/10.1145/77269.77275
https://doi.org/10.14733/cadaps.2024.229-240
https://doi.org/10.1186/s13661-022-01647-5
https://doi.org/10.1016/S0167-8396(03)00003-7
http://www.cad-conference.net

