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Introduction: 
Additive manufacturing (AM) technology, with its manufacturing method of depositing materials layer 
by layer, can realize the processing of complex geometric shapes, breaking the limitations of 
traditional manufacturing processes, providing greater freedom for performance-oriented design, and 
effectively avoiding manufacturability issues [1]. Design for Additive Manufacturing (DfAM) aims to 
generate geometries that meet manufacturing requirements and optimize performance [2]. As a 
powerful design method, topology optimization (TO) has gradually become an ideal choice in this field 
because it can give full play to the flexibility of DfAM [3]. In recent years, more and more studies have 
incorporated the constraints inherent in additive manufacturing into the topology optimization 
framework, such as limiting the overhang angle and controlling the size scale of design features [4,5]. 
These innovations have provided new development directions for topology optimization in AM and 
promoted the application and advancement of this method [6]. 

Since AM adopts a layer-by-layer manufacturing method, almost all AM materials exhibit varying 
degrees of anisotropic characteristics [7], and this phenomenon is particularly obvious in fused 
deposition modeling (FDM). In fact, fully considering the anisotropic properties of materials in 
topology optimization can effectively narrow the performance gap between the designed structure and 
the actual manufactured structure. 

Taking fiber composite 3D printing as an example, the initial research idea is to use fiber angle as 
a complementary variable field to achieve collaborative design of structural topology optimization and 
fiber deposition direction optimization. However, due to the disordered nature of fiber orientations, 
the resulting designs were often difficult to directly apply to manufacturing [8]. In order to solve this 
problem, Lee et al. [9] proposed a method to discretize the topology into unidirectionally deposited 
components to achieve segmented continuous fiber orientation optimization to reduce the complexity 
of the fiber orientation field. Subsequently, Papapetrou et al. [10] further post-processed the optimized 
fiber orientation and proposed a variety of fiber deposition modes, including contour offset mode, 
streamline mode etc., to improve the implement ability of the deposition path. 

However, in practical applications, most FDM machines only support the hybrid deposition path 
(HDP) mode, which achieves material deposition by filling the internal structure after the contour 
offset in a zigzag shape. Therefore, for this mode, Liu et al. [11] proposed a level set-based method 
that combines hybrid deposition path planning with shape optimization and topology optimization to 
improve the performance of the printed structure. In addition, Xu et al. [12] used the SIMP method to 
carry out topology optimization research based on HDP, fully considering the influence of material 
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anisotropy in the topological structure formation process. Meng et al. [13] further expanded this 
method to the dynamic level, studying the dynamic response of the structure under various excitation 
conditions, and verified it through numerical calculations and experiments. 

Notably, existing studies on co-optimization of printing directions and topology in HDP mode 
rarely address multiple orientations. Forcing a uniform direction across all substrate domains is often 
inefficient, as varying directions in specific regions can enhance performance [14]. Therefore, we 
propose a multi-patch design framework that divides the substrate into regions with distinct 
orientations, improving overall performance. Fig. 1 illustrates this framework in HDP mode. Using an 
enhanced double smoothing projection (DSP) filter to separate the contour offset layer, material 
properties are modeled via coordinate transformation of an orthotropic constitutive model [12,13]. 

 

 
 

Fig. 1: Illustration of the multi-patch HDP pattern (a) Print the boundary layer (b) Print the substrate 
domain with direction #1 (c) Print the substrate domain with direction #2. 
 
In summary, this study addresses the concurrent optimization of orientation and density distribution 
under dynamic loads and material anisotropy in HDP mode. We introduce an improved DSP filter and 
SOMP (solid orthotropic material with penalty) interpolation method for concurrent topology and 
direction optimization. The extended-SIMP method couples substrate materials across directions, 
effectively modeling material anisotropy and generating optimal structures and manufacturing 
solutions for dynamic environments. The main contributions are as follows: 
⚫ Orientation-density distribution collaborative optimization method: A novel multi-patch design 

framework for concurrent optimization of topology and printing direction under dynamic loads 
and material anisotropy.  

⚫ Full-scale material anisotropy modeling and dynamic environment optimal structure generation: 
Efficient material anisotropy modeling and optimal structure generation through precise contour 
offset separation and refined density distribution in the substrate domain. 

Optimization problem formulation: 
The time-discrete form of the equation of the ndof-freedom discrete structure under simple harmonic 
load can be expressed as: 

 Mu Cu Ku p  (2.1) 

Where p  represents the time-dependent dynamic load, expressed as ( ) pi tt ep P , with amplitude P  

and frequency
p
. u  represents the displacement vector, where the amplitude of the displacement can 

be written as U , u  and u  represent the first and second order time derivatives of the displacement, 
i.e., velocity and acceleration, respectively. Therefore, Eqn. (2.1) can be rewritten as: 

 2( )p pi iM C K U P  (2.2) 

 2( )p pi idK M C K  (2.3) 

Here dK  represents the dynamic stiffness matrix. In addition, since the influence of damping is not 

considered in this paper, C  is ignored in the subsequent analysis. According to the classical laminate 
theory, the directional elastic tensor of anisotropic materials can be expressed in the form of Eqn. (2.4) 
[12]. 

 0( ) ( ) ( )TD T D T  (2.4) 
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Where 0D  is the unrotated elastic tensor and T  is the coordinate transformation matrix [13]. Next, we 

differentiate the design domain based on the improved DSP method to obtain the substrate domain 
and boundary layer. The algorithm consists of two main parts, namely, PDE filter and the Heaviside 
projection [15]. Their equation is as follows: 

 2 2 tanh( ) tanh( ( )

tanh( ) tanh( (1 )

x
r x x x  (2.5) 

Where x  is the initial design variable, x  is a smoothing variable. r  is a length scale parameter, which 

has a numerical relationship with the classical filter radius R . Then the smoothed variables were 

truncated using Heaviside projection.  here represents the sharpness of the Heaviside function, and 

the threshold  is 0.95. And the boundary thickness w  can be precisely controlled by the filter radius 

R  [15].  

Fig. 2 shows a flow chart of separating the substrate domain from the boundary layer when only 

one substrate domain filling direction is predefined. The design variable 1x  is filtered by DSP to obtain 

the corresponding substrate domain 1  and boundary layer 1
b . At the same time, we can assign the 

predefined direction s  to the substrate domain 1  and obtain the boundary layer direction field b  

through the spatial gradient of the intermediate density field 1 , and finally get the distribution of all 

directions in the design domain. 
 

 
 
Fig. 2: Schematic diagram of the process of dividing the design domain into the substrate domain and 
the boundary layer through DSP and obtaining the corresponding directions. 

 
Since the directions between the substrate domain and the boundary layer are different, based on the 
SOMP model the elastic tension and density of the entire structure can be expressed as: 

 1 1
1 1 1 1 1 1 1( ) (1 ) ( ) (1 )p p p

s i b s bD x D D x  (2.6) 

sD  and bD  in Eqn. (2.6) represent the elastic tension of the substrate domain and boundary layer 

respectively, which are related to the directions s  and b . p  represents the penalty factor. Based on 

the extended-SIMP interpolation, we can treat the substrate domains at different directions as different 
materials for analysis. When there are N filling directions in the substrate domain, the elastic tension 
ND  and density interpolation N  of the entire structure can be expressed as follows: 

 
1 2 1 21 1
( , ) ( , ) ( )

N NN i s i b N s b
N s i b i N i ii i

D x x x D D x x x  (2.7) 
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where i
sD  and i

bD  represent the elastic tension of the substrate domain and boundary layer 

corresponding to the i-th direction. The s
i , b

i , s
i , b

i  are equations of the design variable ( 1 : )ix i N , 

which can be written as follows: 

 
1 1 11

(1 )(1 ) (1 )
NN Ns p p p b p p p

i i i j i i i jj i j ii
 (2.8) 

 
1 1 11

(1 )(1 ) (1 )
NN Ns b

i i i j i i i jj i j ii
 (2.9) 

We take the case that there are two directions 1
s  and 2

s  in the substrate domain (N=2) as an example, 

the structural model is shown in Fig. 3. 
 

 
 

Fig. 3 Simple schematic diagram of the substrate domain and boundary layer at multiple directions. 
 
It is worth noting that the direction of the boundary layer is calculated based on the gradient. 
Therefore, its elastic tension is quite different and essentially based on the derivative of the design 

variable. For example, in this case, there are two boundary layers 1
b  and 2

b , and their corresponding 

directions can be expressed by the following equation: 

 1 21 1 2 2arctan( ) arctan( )
2 2b by x y x

 (2.10) 

Based on all the above preparations, combined with Eqn. (2.2), we take minimizing the overall vibration 
response under a fixed excitation load as the optimization goal, that is, minimizing the norm of the 
dynamic compliance of the structure [16].  

 

2

3

: ( 1, , ), ( 1, , )

min :

( )

. . : 0,( 1, , )

10 ,1 , 2 ,2

i
i s

T

p

i i i

e e

find x i N i N

Cd

s t G V V f i N

x

d

P U

K U K M U P

 (2.11) 

In the formula, iG  represents the volume constraint, if  is the proportion of the substrate domain in 

each direction, and iV  is the volume calculation formula of the i-th substrate, as shown below: 

 11
1

nele N

i i jj ik
V  (2.12) 

Where nele represents the total number of elements corresponding to the finite element mesh. 

Numerical Example: 
In this section, we will use a half-simply supported beam case to demonstrate the effectiveness of our 
optimization algorithm. As shown in Fig. 4, in order to better demonstrate the boundary layer effect, a 
non-design domain is set around its edge. The structure is discretized into 160*160 units, and the 
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material parameters are set as shown in the following table. The load is 200kN with an amplitude P  
and a frequency of 100Hz. The initial directions are set to 0° and 90°, respectively. The volume fraction 

of the two directions is 0.25. The optimization iteration process is shown in Fig. 5. 
 

 
 

Fig. 4: Design domain of optimized structure. 
 

Material 
parameters 

Young's 
modulus 

in x direction  

Young's 
modulus in  
y  direction 

Poisson's 
ratio in 

the xy directi

on 

Density 

Filter 
radius 

of 
density 

field 1x  

Filter 
radius 

of 
density 

field 2x  

Bounda
ry layer 
thickne

ss 

Numeric 50GPaxE  25GPayE  0.4xyV  31kg m  1 6R  2 6R  2w  

 
Tab. 1: Material parameters used in the optimization. 

 

 
 

Fig. 5: The optimization process (a) Iterative process of structural dynamic compliance and 1-st 
eigenfrequency (b) Iterative process of directions of substrate domain (c) Iterative process of volume 
fraction corresponding to two directions. 

 
Combined with Fig. 5, it is not difficult to see that the iteration converges smoothly, and all parameters 
have been optimized to a certain extent. The dynamic compliance is reduced from 113.25kN∙m to 
43.85kN∙m, and the first eigenfrequency is increased to 967Hz. The two directions finally optimized 
are 4.21° and 68.23°, respectively. In Fig. 6, we also show the directional details of the two base 

domains and the two boundary layers. 
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Fig. 6: Schematic diagram of printing direction of each area. 
 

Conclusions: 
This paper proposes a multi-patch dynamic topology optimization method for the anisotropic 
properties of materials in the HDP mode. Based on the erosion DSP algorithm and the extended SIMP 
interpolation model, a material interpolation model suitable for multi- patch conditions is constructed. 
The optimization results show that this method can effectively realize regional division and 
optimization, significantly improve the dynamic performance of the structure, and reduce material 
consumption, providing a theoretical basis and technical support for multi-patch FDM printing. 
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