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Introduction:

The fundamental eigenfrequency is a critical parameter that must be considered in the design of engineer-
ing structures. A lower fundamental eigenfrequency increases the susceptibility of a structure to large
vibrations under low-frequency excitations, due to resonance phenomena. Therefore, maximizing the fun-
damental eigenfrequency is essential to mitigate excessive vibrations during the structural design process.
The primary factors in�uencing the fundamental eigenfrequency include the geometric shape and size,
material properties, and boundary conditions of the structure. In recent years, structural optimization
has increasingly focused on factors such as size, shape, topology, and material to achieve a maximized
fundamental eigenfrequency [7, 8, 10].

Isogeometric analysis o�ers an integrated work�ow for computer-aided design (CAD) and �nite ele-
ment analysis (FEA) by directly utilizing spline-based CAD models for numerical simulations, thereby
eliminating the need for traditional mesh generation. This seamless design-through-analysis process sig-
ni�cantly facilitates structural shape optimization. In this study, we extend the multi-patch isogeometric
structural shape optimization framework introduced in [1] to optimize the fundamental eigenfrequency
of shell structures. Structural analysis is performed using the Reissner-Mindlin shell theory. A gradient-
based optimization algorithm, combined with analytical sensitivity analysis, is employed to solve eigen-
frequency optimization problems. A numerical example is presented to demonstrate the e�ectiveness of
the proposed method.

Free Vibration Analysis of Reissner-Mindlin Shell:

A multi-patch isogeometric Reissner-Mindlin shell method is employed for the numerical simulation of
shell structures. The deformation behavior of shell structures is assumed to occur within the regime of
small displacements and small rotations. A shell structure can be represented by its middle surface as
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follows:

x (ξ, η, ζ) = x̃ (ξ, η) +
t

2
ζn(ξ, η), (2.1)

in which x̃ (ξ, η) denotes the middle surface represented by NURBS patches; t is the thickness of the shell;
n(ξ, η) indicates the unit normal vector; ζ ∈ [−1, 1] is the parameter along the thickness direction.

The displacement of the shell structure is then written as

u(ξ, η, ζ) = ũ(ξ, η) +
t

2
ζ
[
θ̃(ξ, η)× n(ξ, η)

]
, (2.2)

where ũ(ξ, η) and θ̃(ξ, η) denote the displacements and rotations of the middle surface. Using NURBS
basis functions to interpolate the nodal displacements and rotations de�ned at control points, Eq. (2.2)
can be rewritten as

u(ξ, η, ζ) =

ncp∑
i=0

Ri(ξ, η)

{
ũ i +

t

2
ζ
[
θ̃i × n(ξ, η)

]}
, (2.3)

in which ũ i = [ui, vi, wi]
T and θ̃i = [θxi, θyi, θzi]

T represent the three displacements and three rotations
de�ned at the i -th control point [4].

Arranging the translational displacements ũ i and rotational displacements θ̃i into a 6 × 1 vector as
ūi, the strain vector ϵ in Voigt form can be given by

ϵ = [ϵxx, ϵyy, ϵzz, 2ϵxy, 2ϵyz, 2ϵxz]
T =

ncp∑
i=0

B iū i = Bu, (2.4)

where B denotes the strain-displacement matrix.
The solution for the free vibration analysis of shell structures, can be obtained by solving the following

sti�ness equation
(K+ λnM)un = 0. (2.5)

where K and M denote the sti�ness matrix and the mass matrix, respectively; λn is the n-th frequency
parameter and un is the eigenvector corresponding to λn. The eigenvector un is normalized using the
mass matrix with uTnMun = 1. Assuming that the shell structure is constructed by npth NURBS patches,
K and M can be computed as

K =

npth∑
I=1

∫
ΩI

(
BTDB

)
dΩI , M =

nph∑
I=1

∫
ΩI

(
ρNTN

)
dΩI . (2.6)

in which D represents the global constitutive matrix; N is the shape function matrix; ΩI indicates the
physical space of I-th NURBS patch. For a detailed derivation of the isogeometric Reissner-Mindlin shell
formulations, the reader is referred to [3, 4].

Isogeometric Shape Optimization:

The fundamental eigenfrequency, λ1, can be maximized by minimizing the objective function f = 1/λ1.
However, this objective function is discontinuous and may not be di�erentiable, which can adversely
a�ect the convergence of the optimization process. Furthermore, optimizing a single eigenfrequency may
lead to mode switching issues. To address these challenges, a multi-eigenfrequency objective function, as
proposed in [5], is adopted:

f(h) =

{
nλ∑
i=1

(
1

λi(h)

)α
}1/α

, (2.7)
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where h denotes the set of design variables. Let h = (h1, h2, · · · , hnd
), the shape optimization of a shell

structure can be expressed as:

find h ∈ R3

min f = f(h)

s.t. [K(h) + λnM(h)]un = 0,

g(h) = S(h)/S0 − γ ≤ 0,

hmin
i ≤ hi ≤ hmax

i , i = 1, · · · , nd

(2.8)

in which S(h) is the area of the middle surface of the shell structure for a design set h ; S0 denotes the
initial area; γ is the prescribed area fraction; hmin

i and hmax
i denote the minimum and maximum limits

of the i -th design variable hi.
Within the framework of isogeometric shape optimization, a multi-level representation of the geometric

model can be employed, with a coarse model used for design purposes and a denser model for analysis.
The design variables are associated with the control points of the coarse design model. Let P and Q
denote the control point vectors of the design model and the analysis model, respectively. A re�nement
or transformation matrix R is constructed based on the knot insertion and degree elevation algorithms
of the NURBS technique, such that Q = RP. Utilizing the adjoint method, the sensitivity of the k-th
eigenvalue λk with respect to the dense control points Q can be computed by:

dλk

dQ
= uTk

(
∂K

∂Q
− λk

∂M

∂Q

)
uk. (2.9)

The expression for ∂K/∂Q is derived in detail in [1] and is not repeated here, while the term ∂M/∂Q
can be derived as

∂M

∂Q
= ρ

∫
Ω̄

{
∂NT

∂Q
N|J|+NT ∂N

∂Q
|J|+NTN

∂|J|
∂Q

}
dΩ̄, (2.10)

where |J| is the determinant of the Jacobian matrix and Ω̄ denotes the parametric space corresponding to
the physical space Ω. The di�erentiation of the coarse control points P with respect to the design variable
hi is speci�ed. Considering the re�nement matrix and the di�erentiating chain rule, the sensitivity of the
multi-eigenfrequency objective function, as given in Eq. (2.7), takes the form:

df

dhi
=

∂f

∂hi
+

∂f

∂λk

∂λk

∂Q
R

∂P

∂hi
. (2.11)

At this stage, the sensitivity can be explicitly derived. The open-source framework, NLIGA [2], is utilized
for numerical implementation, in conjunction with the open-source library NLOPT [6, 9] for solving the
optimization problem.

Numerical Examples:

In this section, the shape optimization of a cylindrical shell is investigated. The geometric parameters,
as illustrated in Fig. 1(a), are de�ned with L = 60m and R = 10m. The material properties are speci�ed
as: Young's modulus E = 30MPa, Poisson ratio ν = 0.3, density ρ = 2500 Kg/m3. The thickness of the
shell takes t = 0.5m. The left end boundary is clamped.

The design model is represented by 16 quadratic elements, as depicted in Fig. 1(b). Along the length
direction of the cylindrical shell, which aligns with the x-axis, there are six layers of control points. Each
layer comprises nine control points. The design variable is assigned to the i-th layer of control points.

Proceedings of CAD'25, Shenzhen, China, June 23-25, 2025, 172-177
© 2025 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


175

Consequently, the derivative of the j-th layer control point Pj
k, as illustrated in Fig. 1(c), with respect

to the design variable hi, can be explicitly expressed as:

∂Pj
1

∂hi
=

∂Pj
9

∂hi
= [0, 1, 0],

∂Pj
2

∂hi
=

[
0,

√
2

2
,

√
2

2

]
,

∂Pj
3

∂hi
= [0, 0, 1],

∂Pj
4

∂hi
=

[
0,−

√
2

2
,

√
2

2

]
,

∂Pj
5

∂hi
= [0,−1, 0],

∂Pj
6

∂hi
=

[
0,−

√
2

2
,−

√
2

2

]
,

∂Pj
7

∂hi
= [0, 0,−1],

∂Pj
8

∂hi
=

[
0,

√
2

2
,−

√
2

2

]
.

(2.12)

Fig. 1: Geometrical modeling of a cylindrical shell. (a)Geometrical dimensions; (b) Design model; (c)
circumferential parametrization using the design variable.

We �rst examine the convergence of the eigenfrequencies for the initial cylindrical shell without shape
optimization. The cylindrical shell is progressively re�ned into 4 × 4, 8 × 8, 12 × 12, 16 × 16, 24 × 24,
32×32, and 48×48 bi-quadratic elements. As illustrated in Fig. 2, it is observed that the �rst three eigen-
frequencies converge to relatively stable values upon re�nement to 24× 24 elements. Conservatively, the
re�nement of 32×32 elements is adopted as the dense analysis model for subsequent shape optimization.
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Fig. 2: Convergence of the �rst three eigenfrequencies and corresponding mode shapes of the initial
cylindrical shell, without shape optimization.

The design variables are constrained to the range [−5, 5], and the area is restricted to be smaller
than the initial area throughout the shape optimization process. Figure 3 illustrates the history of the
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shape optimization process, depicting both the objective function and the �rst-order eigenfrequency of
the cylindrical shell. Convergence is achieved for both metrics after �fteen iterations. Notably, the radius
of the left-end circle increases from 5m to 10m, while the radius of the right-end circle decreases from
10m to 5.6475m. Figure 4 presents the �rst twelve mode shapes of the optimized cylindrical shell. For
quantitative comparison, Table 1 lists the �rst eight eigenfrequencies of the initial and optimized models,
revealing a signi�cant increase following shape optimization; in particular, the �rst-order eigenfrequency
rises by 568.50%, from 0.3115 to 2.0827.
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Fig. 3: Left: Optimization history of the objective function and the �rst-order eigenfrequency. Right:
Optimized cylindrical shell at the 50th iteration, along with the corresponding design variables.

Fig. 4: The �rst twelve mode shapes of the optimized cylindrical shell.

Conclusions:

This study aims to maximize the fundamental eigenfrequency of shell structures using the isogeometric
shape optimization method. A multi-level geometric representation strategy is implemented to e�ectively
accommodate the distinct requirements of the design and analysis models. Analytical sensitivity formu-
lations are derived to facilitate shape optimization. The numerical example demonstrates a successful
increase in the fundamental eigenfrequency, validating the e�ectiveness of the proposed method.
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Table 1: The �rst eight eigenfrequencies of the cylindrical shell, both before and after shape optimization.

Mode Sequence 1 2 3 4 5 6 7 8
Initial Model 0.3115 0.3115 0.7624 0.7624 1.6208 1.6208 2.6821 2.6821
Optimized Model 2.0827 2.0827 2.0937 2.0937 3.8159 3.8159 4.7250 4.7250
Increase (%) 568.60 568.60 174.62 174.62 135.43 135.43 76.168 76.168
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