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Introduction: 
During large-scale disasters, people are often left behind under the debris of collapsed buildings. In 
such situations, rescue and emergency medical services must infer the position and pose of the 
survivor and determine which body parts are caught in the debris. On the other hand, methods for 
estimating 3D human body pose and shape (HPS) from images using deep learning have been actively 
researched [6]. 

 

 
 

Fig. 1: Differences between well-conditioned and disaster scenes: (a) an image from the 3DPW dataset 
[5] and (b) an image from the “Disaster” dataset constructed herein. 
 
However, most deep learning–based methods for HPS estimation from images are trained only on 
everyday and well-conditioned scenes (Fig. 1a). This makes them less effective when human bodies are 
partially occluded by debris and under irregular lighting conditions (Fig. 1b). Another critical issue is 
that it is very challenging to collect large amounts of training data from actual disaster sites and 
annotate human poses and shapes; the associated ethical considerations further complicate such data 
collection. Therefore, a 3D HPS estimation method that can stably estimate HPS from disaster-site 
images using deep learning must be developed, and a method that would systematically and efficiently 
generate training datasets for this purpose must be devised. 
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The majority of current deep learning–based HPS estimation methods [6] utilize the Skinned Multi-
Person Linear Model (SMPL) [3], which is a parametric model of the human body, to construct learning 
models that estimate the HPS parameters. This requires collecting ground-truth HPS parameter values 
in real-world environments, which is a labor-intensive and error-prone process. To address this issue, 
Black et al. [1] have recently proposed a large-scale synthetic dataset, BEDLAM, for 3D HPS estimation. 
BEDLAM enables the efficient construction of large synthetic datasets of scenes containing human 
bodies in various poses and the corresponding SMPL pose and shape parameter values. Furthermore, it 
has been shown that deep learning models for HPS estimation trained only on BEDLAM can achieve the 
same or better estimation accuracy than models trained on datasets consisting only of authentic 
images. However, this dataset is designed for HPS estimation only in general indoor and outdoor 
scenes: it does not contain scenes with collapsed structures and scattered debris appearing in typical 
disaster sites.  

The purpose of the present study was to develop a prototype system that can automatically 
generate images of human bodies in disaster scenes and the corresponding HPS annotations. To this 
end, we employed a parametric 3D model of the human body and a game engine for simulating an 
indoor disaster scene caused by an earthquake, using the BEDLAM approach as a reference. We then 
investigated the effectiveness of these synthetic images as a training dataset for improving the stability 
and accuracy of HPS estimation. 

Simulation of the disaster scene and generation of synthetic data: 

 
 

Fig. 2: Generation of synthetic training data and 3D HPS estimation for disaster scenes. 

 
Figure 2 shows the overview of our simulation system for the construction of synthetic disaster scenes 
using a game engine (Unreal Engine, UE [4]) and the synthesis of artificial training data for an HPS-
estimation deep learning model. The simulation flow consists of the following steps. 

 

Preparation of the 3D model data 
• Environmental model: Three types of floors, two types of beds, one type of roof, and six types of 

walls were constructed. The beds and roofs were assembled from 3D meshes and textures, while 
the other models (floors, walls) were assembled from textures only. 

• Human body models: One male and one female template model with SMPL shape parameters were 
constructed based on BEDLAM models. Then, these template models were deformed by specifying 
the values of SMPL pose parameters that define the angles of the 23 joints in the human body and 
the orientation of the body. The models were initially converted from the Python binary format 
(.npz) to the FBX format and imported into UE as skeletal meshes (3D models with skeletons). 

• Clothing and hair models: To ensure a variety of appearances, a 3D clothing model with 10 
clothing texture patterns and 12 skin texture patterns was prepared for each gender. The 3D hair 
model was separately attached to the human body model with manual adjustment. 
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• Debris (destroyed wood, concrete blocks) models: Assuming the collapse of an ordinary house 
under a severe earthquake, 115 models of destroyed members, such as wooden pillars, wooden 
boards, and concrete blocks of various shapes and sizes, were prepared. 

 
Simulation of the affected scene 
(1) Arrangement of the static models: An eight-square-meter room is initially constructed by 

appropriately arranging the floor, walls, and ceiling, and a bed is placed inside the room. The floor 
aspect ratio of the room can be changed under the floor area constraint. The objects are treated as 
static objects that are stationary during the simulation. 

(2) Initial placement of dynamic models: A human body model (gender, skin, and clothing textures 
randomly selected) is placed at a random position in the room. In addition, 0–100 debris models 
are randomly placed in different positions and orientations in the room. Each piece of debris is 
subjected to gravity proportional to its volume. 

(3) Running the simulation: The physics simulation in UE is run to reproduce the human body's fall 
and the collisions among debris. The simulation stops after 10 s, and the scene data is acquired 
after all the objects are at a standstill. 

(4) Camera placement and rendering: Ten cameras are randomly placed around the constructed 
scene, and RGB images are rendered. Figure 3 shows examples of the generated images. 

(5) Generation of an annotation dataset for deep learning–based HPS estimation: The SMPL 
parameter values are archived into the annotation dataset. In addition, the visibility flags for each 
joint from a camera and the camera parameters are logged into the dataset. 

By repeating the above process, many training samples (RGB images, SMPL parameter values, visibility 
flags, and camera parameters) can be automatically generated and stored in the annotation dataset. 

 

 
 

Fig. 3: Examples of generated images of disaster scenes. 

Deep learning–based HPS estimation using synthetic disaster scenes: 

This section describes the experiments showing how the estimation performance of the existing 3D 
HPS estimation network can be improved by retraining it on the synthetic image datasets of disaster 
scenes generated using the developed system. 

Herein, experiments were conducted using BEDLAM [1] as a reference. BEDLAM uses a deep 
learning model called CLIFF [2] for HPS estimation; thus, herein, CLIFF was also used as the HPS 
estimation model. 

CLIFF is a framework that estimates the SMPL parameters [3] defining 3D HPS from the input 
images (Fig. 4). In this framework, an object detection process first detects the position of the human 
in the image. Next, the image of the human part is input into the CLIFF, and the 3D HPS fitted to the 
image is estimated. By inputting these parameters into SMPL, the 3D coordinates of the epidermal 
mesh vertices and joint positions can be estimated. When rendering the human body shape as an 
image, the mesh vertices and joints are projected onto the image using the camera parameters. 

Dataset 

A summary of the datasets used herein is provided in  

Tab. 1. The publicly available 3DPW dataset [5] for HPS estimation and our synthetic “Disaster” dataset 
were used together. 3DPW is a dataset consisting of approximately 51,000 single-camera images of 
people in different poses and corresponding 3D annotations obtained from inertial measurement units 
attached to limbs. In our experiments, 3DPW was used for training and validation, but not for testing.  
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Fig. 4: (Left) SMPL parameter description. (Right) Process flow of 3D HPS estimation with CLIFF (figure 
created based on [2]). 

 

Disaster-Sim is a dataset constructed as described above; it was used for training and validation. 
Additionally, the Disaster-Manual dataset was created through the manual placement of 3D models 
and used for testing because manual placement allows to create more natural scenes than those in 
Disaster-Sim.  

In addition, real-world image datasets, Real-DebrisField and Real-Lab, were used as test data. Real-
DebrisField contains images taken at a simulated debris field in the Hirosaki University of Health and 
Welfare Junior College USAR facility. These images were taken under the assumption of a disaster 
situation in which a survivor’s body is sandwiched between concrete blocks, with the entire body not 
necessarily visible because of the blocks. Real-Lab contains images of two subjects recorded at 
different occlusion rates (100%, 90%, 80%, 60%, 50%, 40%, 20%, and 0%). The images of the subjects 
were taken from the same position, and only the occlusion board was moved. After shooting, the 2D 
joint positions of the subjects and bounding boxes were manually determined. 
 

Dataset #Samples Used for  Annotation 

3DPW [29] 22,735 Training, Validation Fully  

Disaster-Sim 7,010 Training, Validation Fully 

Disaster-Manual 802 Testing Fully 

Real-DebrisField 17 Testing None 

Real-Lab 69 Testing 2D joint position only 

 
Tab. 1: Details on the datasets used in the experiment. 

 
Learning model  

CLIFF [2] was used as the learning model. CLIFF consists of a feature extractor and regressor (Fig. 4, 
right). The feature extractor is a deep learning–based 2D pose estimation model, and the regressor 
consists of multiple fully connected layers and dropout layers. In this experiment, the feature 
extractor and regressor were fine-tuned simultaneously. 

Evaluation metrics 
Mean per joint position error (MPJPE), Procrustes-aligned mean per joint position error (PA-MPJPE), and 
mean per vertex position error (MPVPE) have been previously used to assess the performance of 3D 
HPS estimation [6]. Thus, herein we also adopted these evaluation metrics for the Disaster-Manual 
dataset. At the same time, the 2D joint error L2D (mean value of absolute error of each joint position on 
the image) was used as the evaluation metric on the Real-Lab dataset. 
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Results 

The model trained on Disaster-Sim + 3DPW shows the most accurate results by almost all metrics, with 
an MPJPE of 172.04 mm. In contrast, the HPS model trained on only 3DPW exhibits notably worse 
performance, with an MPJPE of 449.26 mm. In addition, models trained on Disaster-Sim or Disaster-Sim 
+ 3DPW estimated human body shapes and poses better than those trained on 3DPW alone. This result 
indicates that existing HPS datasets, such as 3DPW, are insufficient for accurate pose and shape 
estimation from images of human bodies buried in debris, as observed in Disaster-Manual. Therefore, 
the proposed synthetic dataset is more effective for training the models to estimate the HPS of bodies 
buried in debris. 

 

datasets Disaster-Manual Evaluations [mm] Real-Lab 𝐿2𝐷 [pixel] 

 MPJPE↓  PA-MPJPE↓  MPVPE↓ Face, 
left↓  

Back, 
left↓  

Face, 
Front↓ 

Back, 
Front↓ 

3DPW 449.26 150.17 496.38 115 181 156 158 

Disaster-Sim 180.06 113.62 211.67 63 89 65 59 

3DPW +Disaster-Sim 172.04 107.61 202.43 71 87 62 56 

 
Tab. 2: Evaluation metrics for 3D HPS estimation on different datasets. 

 
 

Fig. 5: Example estimation results produced by models trained on each of the three datasets. 
 

The results of pose and shape estimation on actual images (Real-DebrisField and Real-Lab) are shown 
in Fig. 5. The model trained on 3DPW yielded inadequate results for the supine pose and human 
shapes on Real-DebrisField. In contrast, the model trained on Disaster-Sim yielded a more accurate 
supine pose. However, the errors of joint angle estimation on the actual images remain significant for 
both models, indicating the need for further improvement.  

The model trained on Disaster-Sim achieved better accuracy on Real-Lab than the one trained on 
3DPW. In addition, the position of the subject’s head estimated by the HPS model trained on 3DPW is 
notably misaligned (Fig. 5). This misalignment was attributed to a small number of images where the 
subject is lying down in the 3DPW dataset. At the same time, most of the subjects in the Disaster-Sim 
images are in lying poses. Thus, the model trained on this dataset yielded more accurate results than 
models trained on data that included subjects only in everyday standing poses. Therefore, the 
proposed synthetic dataset is effective for training models to determine HPS from real-world images 
involving subjects in lying poses. 
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Conclusions: 

Herein, we developed a synthetic data generation system to simulate disaster scenes. The system 
employs a game engine to automatically synthesize large datasets of diverse images containing models 
of human bodies under collapsed rooms and debris, which would be difficult to collect in a real 
environment. Furthermore, using a parametric human model, the proposed system generates the 
ground-truth HPS data. Importantly, a CLIFF deep learning model trained on the simulated dataset 
showed higher HPS estimation accuracy than those trained on real-world datasets. 

Future studies should further improve the accuracy of HPS estimation from disaster site images. 
In addition, manual adjustments should be automated to ensure variations in clothing and hairstyles 
and reproduce the natural poses of the human body. Furthermore, as the errors in joint angles 
estimated from real disaster-site images remain considerable even for the model trained on the 
proposed dataset, future studies should augment the proposed dataset through the addition of 
shielding conditions closer to real environments. 
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