
149

Title:
A Novel Approach to Metallographic Grain Size Measurement Using Deep Learning and
Computational Geometry Techniques

Authors:
Xiang Li, xli@berkeley.edu, UC Berkeley; Research Institute of Advanced Materials, CISRI Group
Yiming Yuan, yym11267@163.com, Research Institute of Advanced Materials, CISRI Group
Ling Chen, hust_chenling@outlook.com, China Railway Siyuan Survey and Design Group
Shuai Guan, shuai.guan@connect.polyu.hk, Research Institute of Advanced Materials, CISRI Group
Shuai Feng, shuaifeng365@outlook.com, Research Institute of Advanced Materials, CISRI Group
Sara McMains, mcmains@berkeley.edu, UC Berkeley

Keywords:
Metallography, Grain Size Measurement, Topological Skeleton, Materials Characterization

DOI: 10.14733/cadconfP.2025.149-154

Introduction:

Metallography is the analysis of microscopic images of materials to characterize their internal features,
such as grains, phases, and inclusions. It is essential in materials science because these microstruc-
tural characteristics strongly in�uence properties such as strength, toughness, and corrosion resistance.
Accurate metallographic analysis plays a critical role in optimizing the performance and reliability of
metal materials, especially in safety-critical and high-performance applications across industries such as
automotive manufacturing, aerospace, small arms safety, and structural engineering. Among various
metallographic assessments, grain size measurement is particularly important, since the average grain
size often governs key performance attributes of the material [1]. Despite its signi�cance, grain size
measurement remains predominantly manual, making it time-consuming and susceptible to human bias.

Given these challenges, numerous automated methods have been proposed that use either classical
image processing or deep learning for boundary detection. Each approach, however, faces challenges.
Rule-based algorithms work well when grain boundaries are sharply de�ned but can fail in the presence
of complex microstructures [2]. Deep learning methods, while more adaptable, may introduce recognition
errors or overlook certain boundaries if the training data or tuning parameters are suboptimal [3]. Such
inaccuracies eventually degrade the reliability of the measured grain size.

To address these shortcomings, we propose a novel approach that combines deep learning-based seg-
mentation with specially designed post-processing steps using computational geometry concepts. In
particular, our method incorporates advanced topological skeleton analysis to enhance the overall qual-
ity of the grain boundary representations. This integration improves the continuity and clarity of the
boundaries by mitigating noise and discontinuities typically associated with the segmentation process.
Validated on real-world metallographic datasets, our approach is e�cient, scalable, and demonstrates
robust performance across diverse microstructures and preparation conditions. This performance bridges
traditional metallography with computer-aided design (CAD) techniques, enabling automatic and reliable
grain size measurement, and advancing metallographic analysis.
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Main Idea:

Our proposed approach for automatic grain size measurement comprises three key steps: grain boundary
extraction, grain boundary cleaning, and grain size computation using the intercept method. Fig. 1
illustrates the overall structure of our approach and outlines the key steps involved in the process.

(a) (b)

(c) (d)

Fig. 1: Overview of the proposed approach for automatic grain size measurement. (a) Input metallo-
graphic image, (b) grain boundary extraction using the U-Net model, (c) grain boundary cleaning using
a topological skeleton-based process, and (d) �nal grain size calculation via the intercept method.

1. Grain Boundary Extraction: In the initial step, we train and deploy a U-Net model to segment
grain areas and grain boundary regions from input metallographic images. While U-Net e�ectively
identi�es the majority of grain boundaries, it may also detect some grain boundary artifacts and feature
imperfections due to segmentation inaccuracies and the inherent complexities of material structures.

2. Grain Boundary Cleaning: The second step involves re�ning the extracted grain boundaries
through a topological skeleton-based cleaning process. Utilizing computational geometry concepts, we
analyze the main boundary topologies and iteratively remove minor, dangling branches while retaining
larger or more complete branches that correspond to genuine grain boundaries. This process minimizes
the impact of artifacts and imperfections, ensuring a more accurate representation of the grain structure.

3. Grain Size Computation: Finally, we apply the intercept method, a standardized technique
for grain size measurement, to quantify grain sizes based on the cleaned grain boundaries. The intercept
method involves overlaying test patterns on the metallographic images and calculating grain size by
counting the intersections of these patterns with the grain boundaries. Our approach mitigates the
intercept method's sensitivity to small noisy areas and its insensitivity to broken grain boundary ends
by integrating the previous steps, thereby enhancing the overall accuracy and reliability of grain size
measurements.
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Grain Boundary Extraction:

We utilize the U-Net architecture [4] to segment grain boundaries from metallographic images. U-Net is
a well-established model for semantic segmentation and is suitable for high-resolution microscopy data,
enabling a clear distinction between grain boundary regions and grain areas.

A dataset of 400 real-world metallographic images was collected and labeled, encompassing materials
such as high-purity iron and stainless steels produced and imaged under diverse conditions. Each image
was systematically partitioned into 512× 512 patches with a stride of 128, a process that both expands
the dataset and mitigates computational demands during training. These patches were then split into
training (60%), validation (20%), and testing (20%) sets. Additionally, the same testing subset was
manually annotated for grain size measurement using the intercept method, thus enabling an overall
evaluation of our complete approach.

To mitigate the risk of over�tting, several regularization strategies were integrated into our training
process. Speci�cally, dropout layers with a rate of 0.3 were inserted after each convolutional block
in the encoder path of the U-Net architecture, and L2 weight regularization with a coe�cient of 1 ×
10−4 was applied to the network parameters. Furthermore, data augmentation was performed using
horizontal �ipping, vertical �ipping, 90◦ rotations in both clockwise and counterclockwise directions, and
contrast enhancement. We also conducted 10-fold cross validation on the training set to ensure robust
hyperparameter tuning and reliable performance evaluation.

Although U-Net successfully identi�es the majority of grain boundaries, certain challenges remain.
Noise introduced during metallographic preparation and incomplete etching can cause some impurities
to be misclassi�ed as boundaries, while partially corroded boundaries may be misclassi�ed as grains.
Consequently, actual boundaries may appear as dangling branches that are not fully connected, and
other noise-like features may be erroneously labeled as valid boundaries. These artifacts can undermine
the accuracy of subsequent grain size measurements. Therefore, in the next step, we re�ne and correct
the initially segmented boundaries to address these limitations.

Grain Boundary Cleaning:

After the U-Net segmentation, we re�ne the identi�ed grain boundaries by extracting their topological
skeleton and removing incorrect segments. The skeleton representation simpli�es the topology of grain
boundaries, making it easier to distinguish genuine boundaries from undesired artifacts such as segmenta-
tion noise and falsely detected structures within the microstructure. This property allows for a systematic
re�nement process, ensuring that spurious branches and noise can be e�ectively identi�ed and removed
while preserving true grain boundaries.

First, we apply a morphological opening operation to eliminate isolated image noise and smooth any
jagged edges from the U-Net output. Next, we compute the skeleton of the segmented grain boundaries,
which enhances the structural clarity of the extracted boundaries. To remove short, dangling branches,
we set a threshold at 50% of the average branch length. Fully connected boundaries remain una�ected
by this threshold to ensure the preservation of genuine boundaries. Since pruning can introduce new
dangling ends, we iteratively update the skeleton, recalculate the average branch length, and remove
newly formed short branches until no further dangling branches remain.

The skeleton-based cleaning process is summarized in Algorithm 1.

Grain Size Computation:

Following grain boundary extraction and cleaning, the resulting skeleton captures continuous boundaries
and retains any long, dangling branches that correspond to actual grain edges. This step is critical
for the intercept method prescribed by ASTM E112 [5], which is relatively insensitive to small breaks
in boundaries but highly sensitive to noise and artifacts. By removing short, spurious branches and
preserving longer, valid edges, our approach ensures that subsequent grain size measurements accurately
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Algorithm 1 Skeleton-Based Grain Boundary Cleaning

1: procedure SkeletonCleaning(Iseg)
2: Iopen ←MorphologicalOpening(Iseg)
3: S ← Skeleton(Iopen)
4: Lavg ← AverageBranchLength(S)
5: T ← 0.5× Lavg ▷ Threshold set to 50% of average branch length
6: pruningOccurred ← true
7: while pruningOccurred do
8: pruningOccurred ← false
9: for each branch b ∈ S do

10: if IsDangling(b) and Length(b) < T then
11: S ← RemoveBranch(S, b)
12: pruningOccurred ← true
13: end if
14: end for
15: if pruningOccurred then
16: Lavg ← AverageBranchLength(S)
17: T ← 0.5× Lavg

18: end if
19: end while
20: return S
21: end procedure

re�ect the true microstructure.
The intercept method draws test patterns (e.g., lines or circles) over the metallographic image and

counts the intersections between these patterns and the identi�ed grain boundaries. From these counts,
the o�cial ASTM grain size number G is computed using the following formula [5]:

G = −3.288 − 6.643856 × log10

( L

M ×N

)
, (2.1)

where L is the total length of the test patterns in millimeters, M is the magni�cation factor of the
microscope, and N is the number of intersections counted. By aligning with a widely recognized standard,
this method enables our �nal grain size measurements to be directly compared across di�erent laboratories
and material systems.

Results:

We �rst evaluated the U-Net segmentation performance on a test dataset of 80 real-world metallographic
images (as mentioned in the �Grain Boundary Extraction� section) at a resolution of 5472×3648, achieving
a pixel-level accuracy of 95.4% and a mean Intersection over Union (mIoU) of 86.5%. Although most grain
boundaries were accurately identi�ed, some artifacts and incomplete boundaries persisted, underscoring
the necessity for the subsequent skeleton-based cleaning step.

Next, we invited professional metallurgists to manually measure the grain size numbers on these
images using the intercept method, providing ground truth for comparison. Table 1 compares our (U-Net
+ skeleton + intercept) method with several other automatic approaches that are either widely used or
considered likely to yield good results, all employing the same intercept test patterns.

By integrating deep learning and computational geometry, our method achieves the lowest mean
absolute error (0.034) in grain size number among the tested approaches and processes each image in
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Table 1: Comparison of di�erent grain size measurement approaches.

Approach Mean Absolute Error Implementation Time (s)
Manual (Ground Truth) 0 99.17
U-Net + Intercept 0.219 2.81
U-Net + Skeleton + Planimetric 0.148 4.90
U-Net + Skeleton + Intercept (Ours) 0.034 5.04

about 5 seconds, compared to approximately 99 seconds for manual measurement. This outcome con�rms
that our integrated work�ow not only signi�cantly reduces the time and e�ort required for manual analysis
but also outperforms other automatic methods in accuracy, demonstrating its robustness and e�ectiveness
in real-world metallographic analysis.

Conclusions:

In this paper, we presented a novel approach for metallographic grain size measurement that integrates
deep learning and computational geometry techniques. By employing the U-Net model for initial seg-
mentation and a skeleton-based cleaning procedure to re�ne grain boundaries, our method e�ectively
addresses common issues such as noise, incomplete etching, and branching artifacts. The subsequent
application of the intercept method, which follows the ASTM E112 standard, ensures that the �nal grain
size measurements are both accurate and comparable across di�erent laboratories.

Experimental evaluations on real-world metallographic datasets show that our approach achieves
state-of-the-art accuracy among automatic grain size measurement methods, with a mean absolute error
of 0.034 in grain size number. Additionally, it signi�cantly improves e�ciency by reducing the processing
time to approximately 5 s per image, compared to 99 s for manual measurement. By retaining critical
boundary information and eliminating noise, our integrated system provides a reliable, fast, and easily
adaptable solution for a range of material systems and imaging conditions, making it a valuable tool for
advancing metallographic analysis in both research and industrial settings.
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