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Introduction: 
The acquisition of three-dimensional information from objects holds significant importance for vari-
ous fields such as robotic vision navigation, virtual reality (VR), industrial measurement, reverse engi-
neering, and the demand for such information is steadily rising [1–4]. Standard methods for obtaining 
three-dimensional information from objects include binocular stereovision [5], time-of-flight [6], and 
structured light techniques [7] Structured light 3D measurement is a crucial way to obtain three di-
mensional information of an object. The principle is to project a specific encoded pattern onto the 
target object and then capture the image and decode the phase information of the encoded pattern. 
This phase of information reflects the difference in depth or height of the object’s surface. By combin-
ing the phase information with the geometric relationship between the light source and the camera, 
the depth or height of each point on the surface of the object can be calculated. 

For the depth estimation of structured light images, the current application of depth learning in 
structured light 3D measurement mainly focuses on using CNN to calculate the depth information 
from structured light images more accurately and faster, and realize the end-to-end process. Jeught et 
al. [9] proposed a CNN that can predict the 3D height of an input single-frame fringe-structured light 
image, which is the first end-to-end solution that uses a deep learning network to completely replace 
the phase demodulation process. Feng et al. [12] proposed a micro-depth learning contour measure-
ment method, which can transform the input single-frame fringe-structured light image into the corre-
sponding three-dimensional image. Nguyen et al. [13] proposed a robust method combining structured 
light technology and a deep convolutional neural network, which can predict the input of single-frame 
fringe structured light images and output corresponding depth maps. Jia et al. [15] proposed a new 
depth measurement method based on CNN, which can be regarded as a pixel-level classification re-
gression task without matching, and depth information can be calculated from speckle structured 
light images without local stereo matching. Zhu et al. [8] combined the advantages of CNN and Trans-
former to design a two-branch network (CNN branch and Transformer branch). CNN branch and 
Transformer extract local features and global features from images, respectively. There are also some 
end-to-end solutions that use CNNS [16]. Although the aforementioned methods have achieved signif-
icant progress, depth prediction in regions such as small objects remains challenging. Moreover, these 
methods rarely focus on the crucial factor of receptive field. For dense prediction tasks, a larger recep-
tive field can capture global contextual relationships, which helps improve prediction accuracy. There-
fore, we propose a feature fusion method based on 3D convolution to expand the receptive field and 
capture global information from a single structured light image, thereby enhancing depth prediction 
accuracy. Extensive experiments on real-world datasets demonstrate the effectiveness of our method. 

http://www.cad-conference.net/


117 
 
 

 

Proceedings of CAD’25, Shenzhen, China, June 23-25, 2025, 116-120 
© 2025 U-turn Press LLC, http://www.cad-conference.net 

 
 

Compared to hNet [14] and UNet [18], our method improves accuracy by 17% and 16%, respectively, 
while using only 50% of their parameters. 

Main Idea: 

In neural networks, the receptive field refers to the size of the region of interest of a specific neuron in 
the feature map. Since any place outside the range of the receptive field in the input image does not 
affect the unit’s value, it is necessary to control the receptive field size. In many visual tasks, especial-
ly dense prediction tasks such as semantic image segmentation, stereo vision, and depth estimation, 
large receptive fields can improve the accuracy of pixel-level localization and classification [17]. There-
fore, we design a simple and effective method to expand the receptive field and use this method to 
design a 3D convolution feature fusion module to improve depth estimation accuracy. The 3D convo-
lution feature fusion module is used to enlarge the receptive field. In addition, structural re-
parameterization can achieve a better trade-off between network accuracy and inference speed. In this 
section, we describe in detail the proposed method to expand the receptive field. Then, we use the 
method-based 3D convolution feature fusion module to design a simple and effective fringe structured 
light depth estimation network. The network core body uses an encoder-decoder, the encoder-decoder 
architecture can exploit global context information [10][11].The network structure is shown in Fig.1. 

 

 

Fig. 1: Architecture overview of the proposed method. 

 

Fusion 3D refers to the 3D convolution-based feature fusion module. The input to Fusion 3D is the 
feature map obtained during the feature extraction stage, and its output maintains the same resolu-
tion as the input. Fusion 3D first unfolds the input feature map f using a 2×2 window partitioning 
strategy, resulting in a feature map f₁ with four times the number of channels and half the spatial res-
olution. Then, f₁ is lifted into a higher-dimensional space to form f₂, which is processed by three con-
secutive 3D convolution operations for feature fusion in the high-dimensional space, producing f₃. 
Finally, a folding operation is applied to f₃ to restore it back to a 2D feature map f′ with the original 
resolution. 

The network first extracts multi-scale features from the input single-frame structured light image, 
generating feature maps f₁/₄, f₁/₈, and f₁/₁₆ at 1/4, 1/8, and 1/16 of the input image resolution, respec-
tively. The feature map f₁/₁₆ is passed through the Fusion 3D module to obtain f′₁/₁₆, which is then 
concatenated with f₀ to form f_concat. This concatenated feature is upsampled using 2D convolution 
to 1/8 of the input resolution. Similarly, f₁/₈ and f₁/₄ are progressively upsampled through the same 
strategy to produce a feature map f at 1/4 of the input resolution. 

This feature map f is then fed into the second stage of the encoder. The employed SR_Layer mod-
ule consists of two RepVGG Block [19] and a bilinear upsampling layer. SR_Layer_1x maintains the cur-
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rent resolution, while SR_Layer_2x performs 2× upsampling. Intermediate supervision is applied to the 
outputs of all three SR_Layer modules, and the final depth prediction output is generated accordingly. 

We conducted comparative experiments between our proposed method and state-of-the-art ap-
proaches on a real-world dataset. The dataset used is the open-source dataset proposed by Nguyen et 
al., which features structured light patterns with frequencies of 100, 20, 4, and 1. Depth maps are ob-
tained using a four-frequency, four-phase multi-frequency heterodyne method. The experimental re-
sults are shown in Table 1.  

 

Method Paramenters（M） RMSE(mm) Time(s) 

FCN[20]  - 2.03 - 

AEN[13]  - 1.85 - 

Unet[18]  8.63 1.62 0.005 

hNet[14]  8.64 1.64 0.005 

UNet-Wavele[21]  8.64 1.67 - 

hNet-Wavelet[21]  8.64 1.59 - 

DHDNet[16]  14.4 1.77 - 

SIDO[22] - 1.54 0.030 

Our 4.53 1.353 0.010 

 

Tab. 1: Evaluation of the model on the test set of the real dataset. 

 

As shown in Table 1, our proposed method achieves higher accuracy on the real-world dataset com-
pared to state-of-the-art methods, while having the lowest number of parameters and only a slight in-
crease in inference time. This demonstrates that our method achieves a good trade-off between speed 
and accuracy, highlighting the superiority of the proposed approach.  

 

   

(a)Input fringe pattern (b)Ground truth (c)Visualization of Ground truth 

 
 

 

(d)Visualization of Unet’s result (e)Visualization of hNet’s result (f) Visualization of Ours result 

Fig. 2: 3D visualization of model depth estimation. 

 

As shown in Figure 2, our qualitative analysis also shows the 3D visualization results of UNet[18], 
hNet[14], and the depth estimation of the proposed model on the real dataset. On the real dataset, the 
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proposed model can obtain smoother and closer to the real depth results. At the same time, there are 
fewer anomalies. For example, as shown in Figure 6 (c) and Figure 6(d), the depth estimated by Unet 
and hNet models is abnormal in cat ears and cat tails, while the model proposed in this paper (i.e. (f) 
in Figure 1) does not. 

Overall, our main contributions are as follows:  

(1) We propose a method to enlarge the receptive field using 3D convolution and design a 3D con-
volution fusion module using this method.  

(2) Based on the 3D convolutional fusion module, we design a simple and efficient structured light 
depth estimation network. 

Conclusion: 

In this paper, we design a network architecture for depth estimation from structured light images. The 
encoder-decoder structure is adopted in the core body of the network, and the structure re-
parameterization technology and 3D convolution feature fusion module are used. Structure re-
parameterization can achieve a favorable trade-off between the network’s inference speed and accura-
cy, leading to high performance during the inference stage. The 3D convolutional feature fusion mod-
ule can expand the receptive field. We propose that the network takes the fringe structured light image 
of a single frame as input and the output as the depth map of the corresponding image. We do com-
plete experiments on the proposed network and other depth estimation networks on two datasets, and 
the experimental results show that our method is better than other methods in terms of parameter 
number and estimation accuracy, and can maintain a reasonable speed. In the region with rich details 
in the fringe-structured light image, the method in this paper is also better than other methods.  
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