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Introduction:

The �tting of geometric features such as circles and ellipses to given points is applicable in various
�elds [16]. Ellipse, for example, may represent many real-world situations, such as the orbits of the
planets, satellites, and comets. These conic sections are also relevant in science, astronomy, and variety
of engineering applications [6]. In real-world practice, least squares �tting is used in various manufacturing
industries, software applications [18], and also signi�cant in pattern recognition [3]. A circle, an ellipse, a
parabola or a hyperbola are curves that are referred to as conic sections. In this paper, elliptical arcs are
preferred over general conic arcs as ellipses are frequently encountered shapes found as a component in
various objects and have been proven to be bene�cial in �elds such as Computer-Aided Design (CAD),
computer graphics and computer vision [13]. For instance, we are interested in �tting data that form
an arc or a segment of an ellipse. Hence, we apply an ellipse �tting rather than other curve �ttings. In
addition, ellipse ranks among the most prevalent geometric shapes found in the real world [17].

In this paper, we are interested to �t parametric curves in the least squares sense. The best �tting
curve to a given set of points is obtained by minimizing the sum of the square errors of the points from the
curve [1]. This mathematical procedure is called the least squares �tting. Gander et al. [8], Watson [18],
and Pilu et al. [12] apply least squares �tting based on data that forms entire circles and ellipses but here
we only discuss a part of an ellipse or a circle that represents an arc [4] or a curve. While the parameter
z for a full ellipse ranges from 0 to 2π radians, the challenge with data that form a partial ellipse is to
determine where it lies in the parameter z. We will determine the parameter z that best �ts the data
points presumed to be part of an ellipse. Then, we demonstrate how this parameter can be utilized to
estimate road curvature and compare it with the experimental approach employed by engineers.

A simple algorithm that uses a numerical optimization technique is introduced to obtain the best
curve �tting for any given set of data, speci�cally data that forms a segment of an ellipse. This technique
is known as simulated annealing. There are extensive usage of simulated annealing in real-life applications
in which the primary bene�t of it lies in its simplicity [5]. In road curvature estimation, people may relate
road curvature with other bene�ts. For example, Persyn et al. [11] consider various factors related to
road characteristics referring to OpenStreetMap (OSM) to estimate the expenses associated with road
transportation. The factors include the existence of roundabouts and tra�c lights, the surface material
and the curvature of the road. Good estimation of transportation costs is very helpful for trip planning,
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consequently may result in better fuel consumption and less pollution to the environment. The general
parametric conic arcs introduced by [7] outline the process of creating conic blending arcs by utilizing
a uni�ed rational parametric representation that merges the distinct cases of blending parallel and non-
parallel edges based on given constraints such that it requires the arc to maintain a speci�ed distance
from a line, point, or a circle. Otherwise, the arc intersects a circle or line at a speci�ed angle. In this
paper, instead of interpolating points, we used least squares �tting to approximate points for any given
data.

Fitting an Ellipse in Parametric Form:

Generally, in order to �t an ellipse in parametric form, we follow Späth [14] and consider the equations:

x(z) = a+ p cos(z)

y(z) = b+ q sin(z)
(2.1)

where (a, b) is the center of the ellipse, p is the radius along the x-axis, q is the radius along the y-axis
and parameter z lies between 0 to 2π radians. The function to be minimized is:

S(a, b) =

n∑
i=0

(xi − a− p cos(zi))
2 + (yi − b− q sin(zi))

2, (2.2)

where zi is a parametrized value that lies between 0 to 2π radians and (xi, yi) are data points.
Späth [14] utilizes (2.1) to �t an ellipse based on data forming a complete elliptical shape. However,

we consider the case where collected data are from a segment and not the entire ellipse. The issue is dealt
with in [2]; however, we use a parametrization approach in minimization as described in the next section.

In this case, we aim to minimize (2.2) where zi is a parametrized value that lies between θ1 and θ2.
Parameter zi should cover a certain part of an ellipse. For instance, if the data is half of an ellipse that
forms the upper half of ellipse, zi should cover from 0 to π radians. If let's say the data forms the bottom
half of the ellipse, then zi can be from π to 2π radians. The range can be determined through observation;
nonetheless, we will select the optimal values for θ1 and θ2 by optimizing the equation (2.2).

The values of a, b, p and q can be solved by di�erentiating (2.2) with respect to each parameter and
equate it to 0:

δS

δa
= 0 ,

δS

δb
= 0 ,

δS

δp
= 0 ,

δS

δq
= 0. (2.3)

The presence of parameter zi and the uncertainty regarding its interval render the problem di�cult to
solve. Therefore, we will determine the values of a, b, p, and q using simulated annealing, a method that
will be further elaborated in the next section.

Minimizing the Error Distances:

To establish the minimization process using simulated annealing, we start by discussing about parameter
z in the ellipse function. The parameter zi can be computed by:

zi = θ1 + (i− 1)h, (2.4)

where i = 1, 2, ..., n and θ1 denotes the start of the interval while h is de�ned as the step size for parameter
zi and it is assigned arbitrarily.

For instance, if h = 0.1, then z = {θ1, θ1 + 0.1, θ1 + 0.2, θ1 + 0.3, ...}. By choosing any value from θ1
to θ2 from this range, where θ2 = θ1 + (n− 1)h, we can see the pattern of the error distance to be either
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increasing or decreasing. To minimize (2.2), we employ a numerical approach to evaluate the value of
S(a, b). We aim to �nd the values of θ1 and h that will minimize the function.

The error distance can be obtained by using:

d =

n∑
i=0

|(Xi, Yi)− (xi, yi)|, (2.5)

where (Xi, Yi) are the points on the estimated curve and (xi, yi) are the original data points. Hence the
minimum value of (2.5) is the solution to the minimization problem.

We perform the minimization by using a numerical optimization technique called simulated annealing
which is available as a built-in function on Mathematica. The purpose is to �nd the optimum values of
z, and parameters a, b, p, q, θ1 and h in order to obtain the best curve �tting of an ellipse. The next
part of the algorithm is to input data i.e. number of observations, n, coordinates (x1, y1), (x2, y2),...,
(xn, yn), v1, and v2. Then, minimizing (2.2) using simulated annealing subject to constraint 0 ≤ θ1 ≤ 2π
and v1 ≤ h ≤ v2, whereas v1 and v2 are the minimum and maximum step sizes respectively. For our
experiment, we let v1 and v2 ranges from 0.1 to 0.5 where v1 < v2. Meanwhile, the output obtained are
the parameters a, b, p, and q for the equation of ellipse, the minimum error distance, and the values of
θ1 and h.

The Application of Ellipse Fitting on Road Curvature Estimation:

After the minimization procedure, during which we obtained the best-�tting ellipse for data forming a
segment of an ellipse, we now aim to apply the proposed algorithm to �t data from small segments of
roads, particularly those with curvy shapes. Few points will be taken along the desired segment of a
road. Hence, �tting an ellipse on the segment of a road will allow us to calculate the radius of curvature
for each point precisely based on its coordinate on the road.

For the radius of curvature, we compare our approach to Luo et al. [9]. In their paper, radius of
curvature was calculated at 9 di�erent test sites, chosen from highway ramps and �eld measurement were
used to conduct the validation tests. Besides, this paper uses roadway centerline to measure the radius of
curvature and curve length. The road coordinates are determined by referencing to Test Site 3 as stated
in [9]. Ellipses will be constructed, and the radius of curvature can be calculated by using (2.6):

R =
[(x′)2 + (y′)2]

3
2

|x′y”− y′x”|
(2.6)

where x(z) and y(z) are from Equation (2.1).
Test site 3 as shown in Fig. 1(a) is located in Interstate 35 (I-35) in Kansas, United States that begins

at 39◦02'20.43" N, 94◦40'26.76" W and ends at 39◦02'29.26" N, 94◦40'22.67" W with the length of 324 m.
The radius of curvature obtained from �eld measurement is 104.15 m [9]. Coordinates of 9 points along
Test Site 3 from Google Maps were chosen and presented in Table 1, the best curve from minimization
procedure is �tted as shown in Fig. 1(b) and Fig. 1(c) displayed the �tting of a full ellipse.

We can observe that the centre of the ellipse segment is in between point 4 and point 5 and the radius
of curvature in between those points lies between 123.686 m and 94.6137 m. The radius of curvature
obtained from our proposed algorithm is nearly equal to the radius of curvature found by Luo et al. [9]
which is 104.15 m. We do not provide an exact comparison as we are uncertain of which speci�c point
is referenced in [9]. The method used in our paper shows a high similarity to the �eld measurement in
which radius of curvature obtained from the least squares �tting on a segment of an ellipse is found to
be approximately equal to the radius of curvature obtained by Luo et al. [9].

.
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Fig. 1: Test Site 3: (a) Location on Google Maps, (b) 9 points chosen along Test Site 3, and (c) Fitting
of a full ellipse on Test Site 3.

Points Coordinates Radius of curvature (m)

1 (39.039408, -94.672916) 293.312
2 (39.039537, -94.672637) 213.213
3 (39.039712, -94.672455) 157.344
4 (39.039871, -94.672347) 123.686
5 (39.040104, -94.672268) 94.6137
6 (39.040312, -94.672229) 85.0239
7 (39.040496, -94.672251) 89.7698
8 (39.040704, -94.672315) 110.282
9 (39.040944, -94.672433) 153.020

Tab. 1: The coordinates and radius of curvature for 9 points taken along Test Site 3.

Conclusions:

In this paper, least squares �tting is applied to obtain the best curve �tting to the given data that form a
segment of ellipse by minimizing the sum of square errors using simulated annealing. It can be observed
that the solution to the minimization problem approximates the data closely by the ellipse. In addition,
we �t the data of a small segment of a road to obtain its curvature at any speci�c point on the road. For
perspective, this can be extended in future research for travel time prediction in [15] or for the purpose of
road safety in [10]. The positive aspect of our approach lies in its cost e�ciency as we rely on the readily
available GPS data. Generally, if a set of a parametric data is assumed to behave in ellipse shape, we
should be able to perform least squares �tting using the proposed algorithm. A few segment of roads have
been tested by using this approach and the results demonstrated were proven reliable by the proposed
algorithm in obtaining the radius of curvature. Hence, it can be utilized in real-life applications.
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