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Introduction: 
Significant strides in additive manufacturing have enabled the production of cellular structures with 
intricate geometries [1]. Topology Optimization (TO), a practical design tool, has been extensively 
associated with additive manufacturing due to its ability to generate novel and unforeseen designs [2,3]. 
These designs find utility across diverse applications, including medical engineering [4], automotive [5], 
aerospace [6], biomechanics [7], and energy industry [8]. Reducing the weight of a component under 
stress constraints could maximize the strength-to-weight ratio of the component, which has been a 
pivotal objective in practical industries. The study investigates the stress constraints within TO, a field 
where numerous classical approaches have been proposed to tackle challenges in stress-based TO [9,10]. 
Moreover, the stress-based TO methodology is extended to other material fields like multiple isotropic 
materials, anisotropic materials, and hyperelastic materials [11,12]. By combining the TO method with 
the homogenization approach, the material distribution in multiscale is properly tailored, and the 
structures with enhanced mechanical performance are achieved. In light of its significance, stress 
constraints have been investigated within the multiscale TO frameworks [13]. 

The emulation of bone-like structures in the architectural design of medical engineering presents a 
compelling avenue for innovation and efficiency. Bone is composed of compact cortical bone and spongy 
cancellous bone, which form its outer shell and interior. This composite structure arises from a natural 
optimization process aligning with Wolff’s law [14]. Several methodologies have been proposed to 
emulate and optimize bone-like structures. Liu and Shapiro [15] introduced a technique for 
reconstructing 3D microstructures from 2D samples based on example-based texture synthesis, which 
could preserve given statistical features. Another study emphasized anisotropic filtering that directs 
material accumulation in preferred orientations, resembling bone-inspired infills, resulting in enhanced 
stiffness and robustness [14,16]. Additionally, Daynes et al. [17] aligned lattice trusses with principal 
strain directions to increase the stiffness and intensity of structures. Whereafter they proposed a bio-
inspired approach that integrates topology and size optimization, resulting in promising applications 
across multiple loading case scenarios [18]. However, other than the mechanical performance challenges 
faced in the design for additive manufacturing, computationally economical solutions for mass-
customized medical engineering problems are still scarce. This work aims to propose the stress-
constrained TO method for lattice structures. By extending the ordered Solid Isotropic Material with 
Penalization (SIMP) like stress interpolation to the composite material criterion, multiple microstructure 
distributions can be determined on the macroscale. In particular, the Tsai-Hill yield criterion-based 
constraint expression is established in this work. This attribute presents considerable potential in 
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enhancing mechanical performance, alleviating the structural design complexity, and concomitantly 
augmenting safety protocols. 

Algorithm Framework 
A model is established to ensure the consistency of the yield strength on the microscale, and the stresses 
calculated by the homogenized model on the macroscale. Therefore, the multiscale failure model is 
employed to qualify the yield strength of lattice structure with a predefined density ratio. Based on this 
model, an ordered SIMP stress interpolation is constructed, and a so-called scaling method is adopted to 
realize the stress constraints for different microstructures through a global constraint. For simplicity, in 
the remaining content of this subsection, the problem is addressed under 2 D orthogonal-isotropic 
microstructures. 
Ordered SIMP Stress Interpolation 
 

 
 

Figg. 1: Illustration of density-based material sorting. 
 

The ordered SIMP method is employed to evaluate the properties of composite materials. As depicted in 

0, the pseudo isotropic materials are sorted in the ascending order of the material density ρi
T . 

Considering the anisotropic properties of the lattice structures, the homogenization elastic tensor for 
the element e (𝐃e) could be expressed as: 

𝐃e = 𝛈
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H ,                                                                                     (2.1) 
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where 𝐃i
H is the effective elastic tensor which can be calculated by the homogenization method, 𝐃max

H  

is the stiffest element, 𝛈E is the ordered SIMP interpolation function, and p is the penalty coefficient. 
Failure Criterion Identification and Ordered SIMP Stress Interpolation Strategy 
The Tsai-Hill criterion is adopted here to describe the yield behavior of lattice materials. The expression 
of the Tsai-Hill yield criterion is:  
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where σ̅X, σ̅Y, and σ̅XY are the yield stress values for the element. In addition, σT−H can be expressed by 
the following matrix equation as: 

σT−H(ρi) = 𝛆
T𝐃T𝐌𝐃𝛆,                                                                                     (2.4) 

where 𝛆 is the strain and 𝐌 is the criterion matrix, which is given by: 
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The ordered SIMP method is applied to the stresses of the composite material. The element critical matrix 
is given by: 

𝐌e = 𝛈
S ∙ 𝐌max(ρi

T),                                                                                     (2.6) 
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where 𝐌max is the criterion matrix of the material which has the highest yield stress, 𝛈S is the 
interpolation function, and 𝐌i is the criterion matrix that can be calculated by Eq. (2.5). At the microscale, 
the solid material consisting of a lattice structure is assumed to be isotropic with elastic perfectly plastic 
solid of Young’s modulus of 1745 MPa , Poisson’s ratio of 0.3 and yield strength of 65 MPa . The 
macroscale yield strength of the lattice structure is calculated at the peak of the curve of macroscopic 
stress versus strain. As a result, the yielding model of lattice structure can be obtained at different 
relative densities through the uniaxial, shear, and hydrostatic loadings under periodic boundary 
conditions. Eq. (2.3) gives a local constraint, which needs a high computational cost. Here, an alternative 
global constraint by P-norm is applied, which has the form: 

σT−HPN = (∑(σT−H(ρe))
P

Nel

e=1

)

1
P

≤ 1,                                                                     (2.8) 

where σPN is the global P-norm measure, P is the aggregation parameter, and Nel is the total number 
of elements. 
 
Optimization Problem Formulation 
The objective function is to minimize structure weight subject to the maximum Tsai-Hill stress constraint. 
The optimization problem can be mathematically formulated as: 

{
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where M(𝛒) is the objective function of the optimization problem, which represents the total mass of the 
structure. 𝐊,𝐔 and 𝐅 in the equilibrium equation denote stiffness matrix, global displacement and 
prescribed external loads, respectively. The filtered design variable ∀ρ̅e is limited by the upper bound 1, 
and the lower bound ρmin. After obtaining the gradient of this model, the Method of Moving Asymptotes 
(MMA) is adopted to update the topological configuration iteratively. 

Case Study 
Case 1: 
The proposed method is first validated with a 2 D L-bracket benchmark case, whose boundary and 
loading conditions are shown in Fig. 2. For all numerical examples, 4-node quadrilateral elements are 
adopted. For the MMA optimizer, the default move limit is 0.5. Moreover, the initial value of design 
variables in the cases is set to be 0.3, and the filter radius is 3.5 element sizes. The optimization process 
will be converged when no further improvement of the objectives is achieved. 
 

 
 

Fig. 2: Boundary and loading conditions of L-Bracket. 
 
Structured rectangular mesh with 1st order Lagrange elements is adopted in this case. The mesh 
dimension is 50 × 50  elements in the macroscale and 50 × 50  elements in the microscale, and the 
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homogenized stress state is calculated at the element centroid. The two microstructures are made of 
isotropic material, whose yield strength is 65 MPa and Young’s Modulus is 1050 MPa. The mechanical 
properties of the two pre-designed microstructures are listed in Tab. 1. 
 

Microstructure 
1 

 

Density 
ratio 

Yield 
strength in 
x direction 

Yield 
strength in 
xy direction 

60% 1650 750 
𝐷11 𝐷12 𝐷33 

3.8681𝑒5 1.5835𝑒5 8.8424e4 

Microstructure 
2 

 

Density 
ratio 

Yield 
strength in 
x direction 

Yield 
strength in 
xy direction 

40% 1250 667 

𝐷11 𝐷12 𝐷33 
1.7575𝑒5 1.2116e5 3.9591e4 

 

Tab. 1: Mechanical properties of two pre-designed microstructures (unit: MPa). 

 

 
 

Fig. 3: Final result of full-scale design.     

    
The optimized structure is shown in Fig. 3 with a final mass ratio of 0.2347, which proves that the 
lightweight structure goal is achieved. The maximum Tsai-Hill stress in microstructure 1 and 
microstructure 2 are 0.9482 and 0.8011, respectively, which shows better mechanical performance while 
alleviating structural design complexity. 
 

  
(a) (b) 

 

Fig. 4: Tsai-Hill stress distributions for (a) microstructure 2 and (b) microstructure 1.  

  
Fig. 4 shows the real Tsai-Hill stress distributions for different microstructure phases. It is observed that 
the resulting structure suffers from a significant stress concentration around the reentrant corner for 
microstructure 2, while the highest stress occurred at the bottom area of the bracket for microstructure 
1. 
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Case 2: 
The proposed approach is subsequently validated using a bone-like case, and the two microstructures 
listed in Tab. 1 are applied in this case.  
 

 

Fig. 5: Result of bone-like case.  

 
Fig. 5 shows the optimized bone structure, and Fig. 6 shows the real Tsai-Hill stress distributions for 
different microstructure phases. The optimized design's final mass ratio is 0.2644. The Fig. 6(a) part 
indicates microstructure 2, and the Fig.6 (b) part demonstrates microstructure 1. The maximum Tsai-Hill 
stresses in the two microstructures are 0.9981 and 0.8113, respectively, which depicts the real Tsai-Hill 
stress distributions for different microstructure phases. 

         

  
(a) (b) 

 

Fig. 6: Tsai-Hill stress distributions for (a) microstructure 2 and (b) microstructure 1.   

Conclusions 
A framework for stress-based lattice structure topology optimization was proposed for additive 
manufacturing. The homogenization method is employed to efficiently obtain the effective mechanical 
properties of lattice structures in terms of relative density. Moreover, for the effective yield strength, the 
modified Tsai-Hill’s yield criterion is applied to estimate the mechanical performance. It can be 
concluded that this optimization methodology can iteratively optimize the material distributions from 
the design domain while maintaining its mechanical properties under a given load, achieving an optimal 
structure with desired mechanical performance. Specifically, it considers stress constraints to ensure 
that the optimized structure can meet the maximum stress requirements at different scales. In addition, 
augmenting safety protocols is accomplished with modularized data management and enhanced 
structural robustness through the optimization process realized by multiscale stress-constrained 
ordered-SIMP interpolation. Future research will develop a modularized data link that contributes to the 
seamless synchronization of software information throughout organizations, especially for mass 
customization in additive manufacturing or, in other words, complex structure development. 
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