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Introduction: 

Additive Manufacturing (AM) technologies can create complex parts using less energy and material [4]. 
However, a challenge in using AM is to decide the best parameter setting in the process. Factors such 
as the operation temperature, power, speed, and layer thickness are process parameters that affect the 
printing time, part quality, and energy usage [3]. The ideal combination of these parameters is 
determined by measures such as the printing quality, part geometry, and desired properties of the 
final product [2]. Machine Learning (ML) has been widely applied in the pre-processing, processing, and 
post-processing stages of AM [1]. In the design phase, ML can aid in tasks such as geometry prediction, 
design optimization, lattice design, and design classification. During the processing stage, ML is 
utilized to predict optimal process parameters and identify defective process states. In the post-
processing stage, ML applications can assess various parameters related to product structure and 
properties of printed parts [8]. This paper reviews research and methods of the AM process parameter 
setting using ML. Development of the latest research is presented. The review covers different ML 
techniques used to decide the AM process parameters. Relevant literature is collected from scientific 
literature databases, including Web of Science, Scopus, Science Direct, and Research Gate. The review 
highlights the research problems, methods, trends, and limitations. Conclusions are made for 
recommendations for future research to fill gaps in the existing methods and solutions. 

This review focuses on diverse ML techniques employed for parameter selections in AM. Rather 
than endorsing a single technique, the review aims to present an extensive overview of various ML 
methodologies, emphasizing their potential applications and influence in the field. The primary 
objective of this review is to furnish an updated and inclusive perspective on the state-of-the-art 
practices in parameter selections using ML in the realm of AM. By systematically exploring a range of 
ML techniques, the review seeks to provide researchers, practitioners, and stakeholders with a valuable 
resource that encapsulates the latest advancements and trends in this evolving domain. This collective 
insight is anticipated to serve as a foundation for informed decision-making, facilitating further 
research and advancements in the interdisciplinary intersection of ML and AM. 

Main Idea: 
Method: The review investigates applications of ML in selecting AM parameters. A framework is 
proposed to outline the review scope and objectives. The review finds important methods and tools for 
parameter selection and optimization in AM. Related databases are navigated with systematic search 
terms and selection criteria. Over 150 related publications were initially collected and categorized 
based on ML techniques used for the selection and optimization of AM parameters. The final review 
includes approximately 50 high-quality papers. Detail insights are synthesized and analyzed. The stage 
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is set for explorations in this dynamic field. The discussion addresses implications of AM, emphasizing 
challenges and opportunities associated with the ML integration in the AM parameter selection and 
optimization. The conclusion underscores ML notable contributions in AM parameter setting, providing 
a valuable resource for the engineering community in the intersection of AM and ML. 
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Fig. 1: (a) Contribution of databases, (b) Paper distribution by publication years. 

 
As shown in Figure 1(a), the data collection yields contributions from various reputable databases and 
platforms. Notably, 20% of the collected papers are from the Web of Science, reflecting a 
comprehensive exploration of interdisciplinary research within the scientific community. 30% of the 
papers are sourced from Scopus for a broad representation of scholarly literature, emphasizing the 
significance of AM in engineering and technology disciplines. Additionally, 15% of papers are from IEEE 
Xplore, underscoring the importance of ML applications in advancing AM technologies. ScienceDirect 
provides another substantial portion, contributing 20% of the selected papers, demonstrating the 
platform's wealth of research on AM and ML integration. Furthermore, 5% of papers are from PubMed, 
highlighting the emerging interest in biomedical applications of AM. Finally, 10% of the selected papers 
are from other databases and platforms, ensuring a comprehensive overview of the field. Through this 
careful selection process, we aim to provide readers with a comprehensive understanding of the 
intersection between AM process parameter optimization and ML.  

Parameters are critical for the AM part quality, structural integrity, and functionality; they should 
be carefully selected in the AM process. They have significant impacts on the AM efficiency and overall 
quality of the manufactured part. Meticulous control and optimization of these parameters are 
essential for advancing AM capabilities and applications, fostering continual evolution in quality 
assurance, design innovation, and manufacturing efficiency, as shown in Tab. 1. 

Tab. 2 highlights various ML techniques and their applications in both the design and 
manufacturing phases of AM processes. The left column shows techniques relevant to product design, 
while the right column outlines techniques applicable to the overall product manufacturing process [5]. 
Research has been undertaken to explore different methods in the selection and optimization of AM 
process parameters [3]. Process parameter selection, such as the nozzle temperature in FDM or the 
laser's power and scan speed in PBF, is not straightforward. Without an effective method, a skilled 
operator may choose non-optimal parameters, resulting in wasted time and material resources [1]. ML 
provides an effective tool to enhance the AM design and process control [7]. 

 Different ML techniques, such as supervised, unsupervised, and reinforcement learning, are 
imperative to determine their appropriateness for addressing specific needs in the context of AM. 
Supervised ML algorithms, trained with labeled datasets, can predict properties of printed parts, like 
strength and porosity. For example, a random forest model was trained using historical data of laser 
powder bed fusion (LPBF), and a support vector machine (SVM) was trained using direct metal laser 
sintering (DMLS) data. Both achieved accurate predictions of the optimal parameters [6]. Unsupervised 
learning algorithms operate on unlabeled training datasets, extracting patterns from the unlabeled 
data. They are suitable for detecting anomalies and defects in printed parts. In contrast, reinforcement 
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learning (RL) diverges from both supervised and unsupervised ML as it learns tasks through trial and 
error. In RL, the agent receives rewards for desired actions and penalties for undesired ones [7]. 

In AM, leveraging ML for parameter selection and optimization encounters several challenges. 
Firstly, striking a balance between various parameters is crucial, as enhancing one aspect may 
inadvertently detract from another, such as the trade-off between printing speed and surface finish 
quality. Secondly, the selection of an appropriate ML model depends on understanding the intricate 
relationship between parameters and desired outcomes; while linear regression suffices for linear 
relationships, more complex patterns necessitate advanced techniques like neural networks. 
Additionally, the scarcity and quality of data present significant obstacles with limited data risking 
overfitting and poor-quality data biasing predictions [8]. Hence, careful data preprocessing and feature 
engineering are critical to ensure the precision and reliability of ML models in optimizing AM 
processes. 
 

Parameter Description 

Layer Thickness Thickness of each layer deposited during the printing process. 

Printing Speed Speed at which the printing nozzle or laser moves during printing. 

Extrusion/Deposition 

Temperature 

Temperature at which the material is extruded or deposited. 

Bed Temperature Temperature of the build platform or bed where the object is printed. 

Infill Density Percentage of internal structure filling in the printed object. 

Support Structures Generation of support structures to assist overhanging features during 

printing. 

Cooling Rate Rate at which the printed material is cooled after deposition. 

Material Flow Rate Rate at which the material is extruded or deposited. 

Build Orientation The orientation of the object during printing. 

Resolution The level of detail and precision in the printed object. 

Post-Processing Additional processes or treatments are applied after printing. 

 
Tab. 1: Additive Manufacturing Parameters [2]. 

 
 

ML Techniques for Design ML Techniques for Product Process 

Generative Design Predictive Modeling 

Topology Optimization Quality Control & Defect Detection 

Material Selection & Composition Optimization Automated Parameter Tuning 

Part Consolidation Supply Chain Optimization 

Simulation & Prototyping Cost Prediction & Optimization 

Machine Learning-Enhanced CAD Tools Anomaly Detection & Error Prevention 

Personalized Product Design Process Monitoring & Feedback 

Design Classification & Categorization Market Trend Analysis 

Energy Efficiency & Sustainability 
 

Design Collaboration Optimization 
 

Sustainable Design 
 

 
   Tab. 2: ML techniques in AM Product Design and Process [5]. 
 
Comparison and Discussion 
ML techniques employed in the selection and optimization of AM process parameters are compared. 
Various studies in the domain related to this subject are thoroughly reviewed and presented, as shown 
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in Tab. 3. Using ML in AM has a significant promise for advancing the optimization of AM process 
parameters. The transformative impact of AM on manufacturing highlights the paradigm shift from 
traditional subtractive methods to a revolutionary approach where complex structures can be 
fabricated layer by layer, fostering unprecedented levels of design flexibility, rapid prototyping, and 
customization. It also shows challenges associated with AM process settings. AM parameters, including 
the operation temperature, power, speed, and layer thickness, influence the printing time, part quality, 
and energy consumption. 
 

ML Tools/Techniques Applications Benefits Examples 

Regression Models: 
(e.g., Support Vector 
Regression) 

Predict optimal process 
parameters based on 
desired material 
properties, build 
quality or efficiency.
  

Reduced trial and error, 
improved consistency, 
and faster build times. 

Predicting laser power 
and scan speed for 
desired mechanical 
strength in metal AM. 
 

Classification Models: 
(e.g., Random Forest) 

Identify and classify 
defects based on in-
process sensor data 
(e.g., thermal imaging, 
melt pool monitoring). 

Real-time quality 
control, automatic 
adjustments to prevent 
defects, and reduced 
waste. 

Classifying spatter 
formation during Laser 
Powder Bed Fusion 
based on melt pool 
dynamics. 
 

Clustering Algorithms: 
(e.g., K-Means) 

Group similar builds or 
materials based on 
process parameters and 
outcomes. 

Identify trends and 
relationships and 
optimize parameter 
ranges for specific 
applications. 

Clustering different 
polymer AM processes 
based on their 
mechanical properties 
and build parameters. 

Reinforcement 
Learning: 

Dynamically adjust 
process parameters 
during the build based 
on real-time feedback. 

Highly adaptive control 
optimizes for 
unpredictable materials 
or complex geometries. 

Learning optimal laser 
power profile for 
different sections of a 
build based on melt 
pool behavior. 
 

 
Tab. 3: Summary of the ML techniques. 

  
Findings and solutions: 

• ML Model Selection: Advanced regression techniques and domain-specific insights are 
Incorporated to build robust ML models tailored to AM processes. Linear regression offers 
simplicity but may be limited by assumptions of linearity and vulnerability to overfitting. Decision 
trees provide interpretability yet are prone to overfitting and instability, especially with deep trees. 

• Data Quality and Quantity: Collaborative efforts are essential for collecting, selecting, and 
preprocessing high-quality datasets. Investment in the data infrastructure can enhance data 
collection, storage, and analysis, which is crucial for improving ML model performance in AM. ML 
algorithms like random forests and support vector machines offer advantages in predictive 
accuracy but may suffer from limitations such as computational expense and vulnerability to 
overfitting. 

• Algorithm Consideration: ML algorithms should be carefully selected based on suitability for the 
task. While algorithms like random forests and support vector machines offer predictive accuracy, 
they may have limitations such as computational expense and vulnerability to overfitting. Gradient 
boosting techniques demonstrate high predictive accuracy but require substantial computational 
resources and are sensitive to overfitting. Similarly, multilayer perceptron neural networks excel in 
capturing complex relationships but may suffer from overfitting and computational expense. 

http://www.cad-conference.net/


360 
 
 

 

Proceedings of CAD’24, Eger, Hungary, July 8-10, 2024, 356-360 
© 2024 U-turn Press LLC, http://www.cad-conference.net 

 
 

• Neural Network Potential: Despite challenges like overfitting and computational expense, neural 
network-based approaches hold promise for optimizing AM parameters due to their ability to learn 
from large datasets with many features. 

• By leveraging advanced regression techniques, collaborative data efforts, and careful algorithm 
selection, researchers and practitioners can effectively utilize ML to improve AM processes and 
product quality. 
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