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Introduction: 
Building predictive models for assessing a design’s performance is a standard practice in engineering 

design. Traditional Computer-Aided Design (CAD) parameterization, while instrumental in many 

engineering applications, presents inherent challenges when tailored for predictive modeling, 

particularly in the realm of surrogate or metamodels. One of the primary issues is the high-

dimensional nature of CAD-defined parameters. This issue introduces unnecessary complexity to 

prediction models, especially with the increase in the problem size, making predictive models 

cumbersome and potentially reducing their accuracy. As a result, it will be incredibly expensive to 

explore design space with more complex systems [1]. With more data availability and increased 

complexity of modern products, the information overload can overwhelm any design process [2], [3].  

Additionally, conventional CAD parameterization tends to be deterministic and might not easily 
accommodate the variability and uncertainty inherent in real-world applications, which is crucial for 
robust prediction models [4]. For example, in case of design change (such as an assembly relationship 
or a sketch dimension removal or addition) could make a surrogate model useless because the 
dimension that was being utilized as a feature in the machine learning might not be used in the 
geometry as a result of the drastic change in the shape. 

 Furthermore, CAD parameters are frequently derived based on design intent [5] meaning 
designers just want to ensure that their idea translates accurately into a digital (and ultimately 
physical) object. Yet model predictive power is often brought in late during design iterations. So most 
likely, designers unintentionally make decisions that lead to the inclusion of irrelevant or redundant 
features that do not reveal as problems until the later phases of product development [6]. In design 
space exploration, not only does this increase the computational demands but can also obscure 
meaningful relationships (between input and output), hindering the model's generalizability and 
performance. Thus, there's a pressing need for refined and purpose-driven parameterization 
techniques that align more closely with the requirements of predictive models. 

In this paper, by feature, we mean variables in the predictive model dataset that are connected to 
the geometry and CAD work. To avoid mixing, we use the sleeping parameters convention that was 
introduced recently by the authors [7]. CAD features are historically used for building meta/surrogate 
models [8], [9]. These features are dependent on the geometry and how the designer shapes it, which 
brings in all the mentioned problems, such as rigid parameterized models, high dimensionality, 
unintentional complexity by following design intent, and so on. Sleeping parameters are defined in 
contrast to conventional CAD parameterization. Sleeping parameters are defined as mined features 
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that are extracted from the geometry of the design but are not coupled with them. They can be 
constructed, extracted, selected, and then processed even if the geometry loses or gains drastic 
changes [7]. The aim is to make the end predictive model more flexible by engineering high-quality 
features.  

Studied Case: 

Within the automotive industry, the analysis of structural components is crucial, given their role in 
vehicle safety and performance. Many automakers use a repetitive design process to evaluate the 
performance of these designed beams. As the final design needs to be integrated with other systems, 
these design iterations can take up to many years [10]. Therefore, being able to predict the 
performance of these beams is of utmost importance.  To show such ability in this paper, we use 
cross-section geometries for the beams that already exist in the literature. [11]. Figure 1 shows 46 
geometries that are a simplified representation of a Toyota RAV4’s frame[10]. Using these images of 
the geometries, a similar scaled curve is extracted for each shown cross-section. 

 

 

 

To be able to show the predictability, SEA and PCF of each one of these tubes are simulated under 
lateral load as shown in Figure 2. To this end, a dynamic explicit simulation is used with a semi-
automatic mass scaling in a process. Several output variables are requested from the simulation, all 
these variables are requested every 5e-5 second of the simulation. The reaction force is the first 
variable requested; this is measured at every node in the tube’s boundary condition. The other two 
variables are the velocity of the wall displacement, since the wall touches the tube at the beginning of 
the simulation the measured amount of wall displacement is the same amount the tube displaces [12]. 

 

    

Fig. 2: The finite element process of one example cross-section. 
 

All cross-sections are simulated to read out their crashworthiness characteristics, such as PCF and 

SEA. The verification of the FEM model was done with the results of published literature [13]. Many of 

Fig. 1: An example of frames in BIW with many different beam geometries 
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the geometries that are simulated have spot welds between the different plates. To simplify the FEM 

process, they are considered as rigid nodes as suggested in the literature [14]. Since the performance 

of the welds is not of interest in this study, this choice does not affect the final conclusions.  

Extracting sleeping Parameters: 
This paper suggests using an alternative geometric representation of a shape as a means for data 

mining before building a predictive machine learning model. The medial axis or the "skeleton" of a 

shape is the set of all points inside the shape that have equal distance to two or more points on the 

shape's boundary. The medial axis of a simple polygon is closely related to the Voronoi diagram 

constructed from its edges. [7]. The shape of the medial axis is unique for each polygon and it can be 

used to restore a shape based on its medial axis as well. In general, one can consider the medial axis of 

a shape as an alternative geometric representation of the shape but in a lower dimension. This is 

because the medial axis of a 3d shape is a 2d surface, and the medial axis of a 2d shape reduces down 

to a curve. The convex or concaveness of the shape is not of importance for our use case aim because 

it just determines the direction and position of the medial axis. However, the shaper must be closed, 

and indeed, three of the cross-sections that are not closed polygons (numbers 16, 32, and 35) are 

removed from our analyses. 

To construct a medial axis of shape Rhino Grasshopper is used. The saved STEP files (from the 

previous section) were imported into Rhino Grasshopper using the yellow part of the script shown in 

Figure 3. The figure shows after importing the geometry the data goes through components for 

creating a boundary surface and then the surface splits it into several segments in another component 

depending on how many sections exist in the geometry. The blue section in the figure reconstructs the 

medial axis of each section and then combines them with a series of components for later analysis. 

This is shown with two output components in the figure namely “Radius of circles” and “Medial axis 

segments  

 

 
 

Fig. 3: The visual representation of the Rhino grasshopper code. 

The steps for constructing the medial axis of a shape are as follows. First, the boundary is divided into 

equally distanced points (the number can be adjusted with a slider component), and then a circle is 

grown on each cell to create Voronoi cells. Here, every point in the circumference acts as a seed for 

these Voronoi cells. When these cells reach each other (as a result of increasing the size of cells), they 

create the desired medial axis.  

Figure 4 illustrates the results of the applied process and the acquired medial (in blue line) axis 

and radius of the circles (in gray lines) for one, two, and three segmented cross sections from left to 

right. The black curves correspond to the geometry’s outer circumference, and as is shown, cross-

sections have different numbers of segments. It can be argued that while the medial axis is coupled to 
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the shapes' intricate geometry, the constructing radiuses are related to the regions of the shape and 

thus can hold regional-based information for end predictive models.  

 

   
 

Fig. 4: Several geometries (3 out of 46) after the Voronoi operation. 

Different types of features 
The region-based information can be extracted by averaging or summing the length of all gray lines in 

the shape. Thus, averaging and summing gives us two features that are called “Average. circle radius” 

and “Width information,” respectively. The average circle radius is indirectly related to the shape's 

overall size and scale. While it doesn't give the exact area, it provides a sense of whether shapes are 

predominantly large or small within the dataset. If size matters for the predictive model, this feature 

could be a useful input. 

The medial axis (blue curve) shown in Figure 4 can be used to extract several features, such as the 

“length of the medial axis” and “number of branch points.” The length of the medial axis can offer 

insight into the overall size and extent of the shape. The number of branch points, on the other hand, 

reflects the complexity of the shape's internal structure.  

Perimeter offers a basic size estimator. While it doesn't directly capture intricate details, it 

provides a general size reference for comparison between shapes. This can be valuable for a predictive 

model that involves any kind of normalization or adjustment based on size. In topology, "handles" 

refer to the number of holes in the shape. A higher number of handles correlates with a more complex 

boundary, potentially indicating cavities or indentations.  
Another feature, the compactness ratio of a polygon shape is a well-known metric for 2d and 3d 

shapes and is an intrinsic property of objects [15]. This is calculated as the ratio of the area of a shape 

to the area of its bounding circle. For the same area, shapes that deviate significantly from being 

circular will have lower compactness ratios. This feature can offer insights into how well a shape fills 

its space. Hybrid features can help differentiate shapes with similar areas but drastically different 

contours.  

Validating the extracted features: 
After any feature mining process, it is crucial to employ feature selection techniques to determine 

which one of the extracted features has the strongest predictive power. Different correlation 

techniques can be used to study the quality of the extracted features. We aim to use different types of 

techniques to account for both linear relations in the data as well as nonlinear relations in this paper.  

To be able to describe the complexity of the relation, a simple linear relationship that is derived 

from fitting a linear line to the data, is used. This parameter can be extracted from the score of the 

linear regression model in Keras. Table 1 shows the linear regression score as the first quality check 

metric for all extracted features. This score mainly tells us how well a simple linear model explains the 

variability in one variable based on changes in another variable. 
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Linear regression 

score 
Pearson 

correlation 
Spearman 
correlation  

 SEA PCF SEA PCF SEA PCF 

Length of Medial Axis 0.83 0.89 -0.91 0.94 -0.93 0.92 

Width Information 0.26 0.23 -0.50 0.48 -0.57 0.58 

Num. of Handels 0.68 0.77 -0.82 0.88 -0.81 0.81 

Branching Points 0.70 0.79 -0.83 0.89 -0.86 0.85 

Shape Perimeter 0.87 0.98 -0.93 0.99 -0.99 0.98 

Avg. Circle Radius 0.34 0.30 0.58 -0.54 0.58 -0.58 

Shape Compactness 0.57 0.52 0.75 -0.72 0.74 -0.74 

Tab. 1: Correlation between mined features and two FEM outputs. 

Parametric Correlations are used when data is assumed to follow a normal distribution. For example, 
the Pearson Correlation Coefficient is the most common measure that captures the strength and 
direction of a linear relationship between two continuous variables. There are also nonparametric 
Correlations, such as Spearman, which is rank-based and is used when data is not normally distributed 
or contains outliers. Spearman Correlation (Spearman's rho) measures the strength and direction of a 
monotonic relationship between two variables (continuous or ordinal). A monotonic relationship means 
the variables consistently increase or decrease together, but not necessarily at a constant rate. Both 
Pearson and Spearman correlations range between [-1,1]. -1 means perfect negative correlation, +1 
means perfect positive correlation, and zero means no correlation. 

Conclusion: 
The paper seeks to generalize the concept of sleeping parameters as an alternative way of using CAD 
to extract features for data-driven approaches in engineering design. Feature extraction has been used 
in data science to improve the quality of the inputs as a preprocess for machine learning. By 
combining the medial axis representation with Voronoi-derived circle radii, we obtain a rich set of 
features that capture both the skeletal and regional properties of complex shapes. These features offer 
valuable insights for data mining and predictive tasks across diverse engineering domains. The 
methodology is showcased on a crashworthiness case and is an example of how the medial axis can 
create new features that correlate with design performance. We conclude this concept can also 
improve the engineering application of data science. This will enable much more efficient mapping 
between input and output and will make the design loops independent of the parameterization. By 
leveraging this approach, engineers and designers can enhance the efficiency of design processes, 
facilitate iterative loops, and improve the accuracy of regression models. 
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