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Introduction:

The triangular mesh surface model serves as a versatile representation method for three-dimensional
objects, playing a signi�cant role in various aspects of computer-aided engineering, including reverse
design, rapid prototyping, 3D printing, and virtual simulation. Consequently, the reconstruction and
processing of triangular mesh surface models constitute a signi�cant research focus within the �eld. A
large amount of 3D grid data in industry is obtained through 3D measurement, where the resulting grid
model often incorporates noise introduced during scanning and digitization. This noise can signi�cantly
impede the usability of the grid model, necessitating its removal during the pre-processing stage.

Taubin [1] proposed a non-shrinkage two-step smoothing method implemented through signal pro-
cessing. Vollmer et al. [2]introduced a simple, fast Laplacian smoothing algorithm. However, it results
in surface contraction and cannot preserve sharp features. Researchers later developed various isotropic
denoising methods based on volume preservation, frequency or di�erential properties [3]. Due to the
di�culty in preserving geometric features with isotropic methods, anisotropic denoising methods gained
widespread attention. Various methods based on di�usion or di�erential information have been proposed,
such as [4] To address this issue, anisotropic methods have emerged. An early work by Hildebrandt and
Polthier [4] uses mean curvature �ow to preserve features while denoising mesh shapes. Subsequently,
two-step methods, such as bilateral �ltering techniques [5] and others [9, 10, 11], have been proposed
to better preserve features. These methods typically involve normal smoothing and vertex updating,
showing promising results for robust, feature-preserving mesh denoising.In recent years, researchers have
explored classi�cation techniques for distinguishing features during mesh denoising [12, 13, 14]. However,
these strategies often focus on local neighborhoods and are susceptible to noise. To mitigate this, Lu et
al. [10] introduced a pre-�ltering technique before denoising to reduce the impact of excessive noise

In this paper, we adopt a method that �rst estimates the normal direction using non-local similar
structures [15], and then �lters the normal direction using orthogonal polynomial �tting line matrices
to achieve �ltering and denoising e�ects on the triangular mesh [6]. The matrix constructed with non-
local homologous similar structures has been proven to be more representative and robust. Additionally,
orthogonal polynomials of di�erent orders do not interfere with each other, reducing both time costs
and computational complexity in the denoising process. Experiments have shown that our method can
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produce results comparable to or of higher quality than state-of-the-art methods. The speci�c algorithm
�ow chart is shown as the following Fig. 1.

Principle:

The algorithm is divided into three stages, namely the construction of non-local similar structure, or-
thogonal polynomial �tting vector matrix, according to the position of the new normal update point, the
speci�c algorithm �ow chart is shown as follows

Fig. 1: A general overview of the algorithm.

1. The construction of non-local similar structures:
Given a surface mesh M = (V,E, F ) with N vertices, we have the set of vertices V , the set of edges

E and the set of faces F . The i-th vertex vi ∈ V is represented by the coordinates vi = (xi, yi, zi)
Each face fi. has a local structure Si, which consists of the r -ring structure of fi. Due to the surface
irregularities in the noisy triangular mesh model, estimating the normal direction using a single face may
not be accurate enough. Therefore, we use the local structure to calculate a normal tensor, which replaces
the initial normal, The speci�c de�nitions are as follows:

Tij = η(∥ci − cj∥)ϕ(θij)nT
j nj (2.1)

Where ci refers to the centroid of the current face fi, and ni refers to the normal of fi. η and ϕ are the
weights induced by spatial distances and intersection angles θij of two neighboring normals, The speci�c
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de�nitions are as follows:
Φ(θ) = e−(

1−cos θ
1−cos δθ )

2

(2.2)

η(x) = e−(
x
δp )

2

(2.3)

σp and σθ are the parameters, Based on experiments, σp is set to twice the maximum distance between
two points in the set of faces of the r-ring neighborhood of fi. σθ is set to be 30◦.

For each local structure Si, we can derive the accumulated tensor by aggregating all the induced
tensor votes (2.4), i, j ∈ Si. This �nal tensor encodes the local structure, which provides a reliable,
representative orientation.

Ti =
∑
j∈Si

Tij (2.4)

When obtaining the local principal components, we use matrix decomposition technique to decompose
the Ti(3*3) matrix. Consequently, three eigenvalues and their corresponding eigenvectors are obtained.
We select the eigenvector λiso associated with the maximum eigenvalue Viso as the principal direction of
this local structure. This is also referred to as the local tensor.

After obtaining the representative direction Viso for each local structure, we use Viso as a reference
to �lter out faces in the face set that are approximately aligned with this local direction. This approach
eliminates faces with large errors in the local structure, preparing for the next step of �ltering out non-
locally aligned similar structures. The �ltering criterion involves comparing the angle θth between the
normal of each face fi in set Si and the direction Viso. If the noise level in the model is high, the threshold
angle θth is set larger; otherwise, it is set smaller. Expanding the neighborhood range, searching for the
R-ring neighborhood of face fi (with R>r), for each face fi within the neighborhood, identifying its local
co-aligned structure Siso

j , comparing Siso
j with Siso

i , and determining the angle θth between them. For
cases with high noise, the angle threshold θth is set to 40◦. while for cases with low noise, it is set to20◦.
Identifying all local co-aligned structures that meet the criteria and adding them to Snls

i , ultimately
obtaining the non-locally co-aligned similar structures for each face in the model.

2. Orthogonal polynomial �tting estimation for normal
Legendre polynomials are polynomials de�ned on the interval (−1, 1) that are orthogonal with respect

to the weight function w(x) = 1. In fact, Legendre polynomials are a special case of Jacobi polynomials
when α = β = 0. The expression of Legendre polynomials is

Pn(x) =
1

2nn!

dn

dxn

[
(x2 − 1)n

]
(2.5)

The recurrence formula for Legendre polynomials is:

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x) (2.6)

The speci�c expansion calculation of Legendre polynomials is as follows.

φ0(x) = 1

φ1(x) = x− (x,φ0(x))
(φ0(x),φ0(x))

φ0(x) = x−
∫ 1
1
xdx∫ 1

−1
dx

· 1 = x

φ2(x) = x2 − (x2,φ0(x))
(φ0(x),φ0(x))

φ0(x)−
(x2,φ1(x))

(φ1(x),φ1(x))
φ1(x) = x2 − 1

3

φ3(x) = x3 − (x3,φ0(x))
(φ0(x),φ0(x))

φ0(x)−
(x3,φ1(x))

(φ1(x),φ1(x))
φ1(x)−

(x3,φ2(x))
(φ2(x),φ2(x))

φ2(x) = x3 − 3
5x

(2.7)
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For each non-local similar structure Snls
i for the isotropic structure Siso

i associated with the face fi,
we append the face normals of Snls

i as rows to a matrix M. Note that the dimensions of this matrix are
r × 3. This matrix already has a maximal rank of 3 and is a low rank matrix. To make the low rank
matrix approximation meaningful, we reshape the matrix M to be close to a square matrix R. irst, we
need to construct the orthogonal bases for the X and Y directions of matrix R. Assuming the �tting order
in the X-direction is a and in the Y-direction is b, the expressions for these two orthogonal bases can be
represented as:Bx = {φ0(x), φ1(x), φ2(x)......φa(x)},By = {φ0(y), φ1(y), φ2(y)......φa(y)}.

The expression of the �tting matrix is obtained by discretizing Bx at uniform intervals within the
range [-1, 1], resulting in a total of n nodes. From this discretization, the basis matrix Bx(n× a) and its
transpose matrix BT

x (a× n) are obtained. Similarly, the basis matrix in the Y direction By(m× b) and
its transpose matrix BT

y (b ×m) are also obtained through m uniform intervals. Here, Z represents the
matrix after orthogonal polynomial �ltering.

Zm×n = By(m×b) ∗BT
y(b×m) ∗Rm×n ∗Bx(n×a) ∗BT

x(a×n) (2.8)

When constructing the similar structures for each face, adjacent faces form a set of similar structures
S = {f1, f2, . . . , fn}, where overlapping regions may occur. In such cases, a weight is assigned to each
face fi to track its frequency of use. The �nal matrix is then obtained by accumulating contributions
from each face, which are divided by the corresponding weight coe�cient. This process results in the
updated normal direction for each face.

3.After obtaining the updated normals corresponding to each triangle, we update the position of each
vertex in the triangle according to the new normals. We calculate the new position of the point using
the following formula:

x′
i = xi +

1

|FV (i)|
∑

k∈FV (i)

n′
k (n

′
k · (ck − xi)) (2.9)

FV (i) refers to the set of torus adjacent to a triangle , andrefers to the center of the triangle where the
current point is located.

Experiments and results:

In our experiments, we tested our method on numerous mesh models corrupted by synthesized or original
scan noise. Additionally, we evaluated several state-of-the-art mesh denoising methods on the same test
set for comparison. The selected state-of-the-art mesh denoising methods include Bilateral Normal Filter
(BNF)[5], the Unilateral Normal Filter (UNF)[11], the Guided Normal Filter (GNF)[7]. the L1-median
Filter (L1) [10] and Half-kernel Laplacian Operator (HLO) [8].

We compare the state-of-the-art techniques with our approach from a quantitative perspective. Specif-
ically, we employ Ev and MSAE (mean square angular error) to respectively evaluate the positional error
and normal error, as suggested by previous works [11, 5]. These two metrics are calculated between the
smoothing results and their corresponding ground truth.

According to [11], Ev is the L2 vertex-based mesh-to-mesh error metric, and MSAE measures the
mean square angular error between the face normals of the denoised mesh and those of the ground truth.

Ev =

√√√√ 1

3
∑

k∈F Ak

∑
i∈V

∑
j∈FV (i)

Ajdist(x
′
i, T )

2, (2.10)

Where Ak is the area of face k, and dist(x
′

i, T ) is the L
2 distance between the updated vertex x

′

i and

a triangle of the reference mesh T which is closest to x
′

i.
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MSAE =

∑
k∈F θ2k
NF

(2.11)

Where θk is the angle between the k-th face normal of the denoised model and its corresponding
normal in the ground-truth model, and NF is the number of faces in the 3D shape.

Table 1: Quantitative comparisons with representative mesh smoothing methods.

Models Methods MSAE(×10−2) Ev(×10−3)
cube BNF 0.889 4.758
Figure 2 UNF 0.135 1.229
(σn = 0.2le) GNF 0.425 1.267
|V | :12288 L1 0.153 1.303
|F | :6146 HLO 0.153 1.303

OURS 0.075 1.224

fandisk BNF 12.182 8.536
Figure 2 UNF 11.324 10.437
(σn = 0.2le) GNF 10.739 6.976
|V | :7229 L1 20.817 8.147
|F | :14454 HLO 8.545 18.208

OURS 10.349 5.983

Noisy BNF [5] UNF [11] GNF [7] L1 [10] HLO [8] Ours

Fig. 2: Coloured Ev for Cube and Fandisk with noise σn = 0.2le.

Conclusions:

In this paper, the construction of non-local similar structures based on normal matrices is more repre-
sentative and robust. Orthogonal polynomials are easier to implement for preserving features in mesh
denoising compared to regular polynomials. Similar to other methods, our approach has limited robust-
ness against excessive noise and irregular triangulation. Regarding future work, we can consider �tting
orthogonal polynomials separately to the normals after partitioning the mesh. For example, designating
the mesh's corner and edge parts as feature segments, and the remaining parts as non-feature segments,
and then applying thresholding separately to these segments. We hope that through this method, we can
design more robust algorithms
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