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Introduction: 
Advancements in the development of high-grade and commodity RGB-D sensors have reshaped the 
landscape of computer vision [6-8]. Related goals and tasks have been changed and are constantly 
evolving. The integration of RGB-D data in image segmentation plays a pivotal role in advancing 
computer vision applications by providing a more accurate representation and a semantic interpretation 
of visual scenes [9]. The importance of newly developed methods lies in the combination of RGB 
information from color images and direct spatial depth details derived from depth sensors, which 
otherwise would be hard to impossible to infer from traditional images. This paper focuses on using 
depth data to solve edge detection and image segmentation problems. We developed a state-of-the-art 
algorithm that manages both problems by employing a local pixel-based data classification and a global 
interproximation-based edge smoothing technique. Furthermore, we simplify the task of segmentation 
to the task of edge detection by outlining the boundary of selected image objects [9-10]. 
This paper presents a combined solution for edge detection and segmentation problems. The main 
contributions of this work are: 

• Local approach to semantic pixel classification based on available information about 
neighboring pixels (the initial guess for boundary and the follow-up depth correction). 

• Global approach for estimating edges of an object based on minimizing the energy of the curve 
representing the boundary.  

Method Description: 
Step 1.  Initial Boundary Guess: Pixel-Based Classification 
Pixel-based classification of depth data serves as the foundational step in formulating an initial 
estimation of the object boundaries within the scene. The program begins by extracting depth 
information from a given depth image where each pixel corresponds to a specific distance extending 
from a sensor to a point on the surface of an object in the scene. From the user-selected point, the 
program initiates an expansion process, systematically adding and traversing rows in all four directions 
across the depth image. During this expansion, pixels are classified according to a predefined scheme, 
attributing semantic labels based on the discerned characteristics. The output of the program is a 
comprehensive classification matrix encapsulating assigned labels for each pixel within the selected 
object and a bounding polygon that succinctly outlines the spatial extent of the object. 
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Fig. 1: Four-way expansion used in the search for object’s boundary: (a) Indented directional expansion 
(b) Left expansion: image is rotated by -180 degrees (c) Bottom expansion: image is rotated -90 degrees 
(d) Right expansion: image is not rotated (e) Top expansion: image is rotated -270 degrees. 

 
We simplified the implementation of the algorithm by treating all four search directions as a unified 
entity and opting for a single direction – in this case, arbitrarily chosen as right. Before engaging in pixel 
classification, the program flips the image, aligning it with the right expansion direction. Once the 
classification for a specific direction concludes, the image is reverted to its original orientation. Pixel-
based classification heavily relies on previously categorized pixels supplemented by depth map data 
when existing information is insufficient. In certain scenarios, depending solely on prior classification 
and depth map data, it may also prove insufficient for accurately assigning a semantic label. To address 
this limitation, the algorithm compensates by pre-computing average depth values in the vicinity of the 
pixel undergoing classification. 

 

 
 

Fig. 2: Sample results for pixel-based semantic classification. 

 
Step 2. Construct a list of points and regions from the data obtained in the previous step.  
The previous step yields the classification matrix of the object pixels and the corresponding bounding 
polygon. In this phase, our objective is to extract an ordered list of exact points and uncertain regions. 
The procedural logic behind this process is straightforward and intuitively structured. Starting with the 
identification of the initial boundary pixel, the search for subsequent pixels is performed using a 3x3 
sliding window and positioning the current boundary pixels at the center of the window. The algorithm 
explores the immediate vicinity of the next boundary pixel, marking each discovered pixel as visited. The 
classification matrix is traversed until no further boundary pixels are found. Upon completion, the 
algorithm returns to the starting point, verifying whether the edge extends into additional directions. 
The output is an ordered list of exact points and uncertain regions of the boundary representing an 
outline of the selected object.  
 
Step 3. Identify points and regions to be used in interproximation based on measurement of curvature. 
After constructing the ordered list of points and regions, the subsequent objective is to select only the 
essential points. Typically, an object's boundary may encompass hundreds of points. However, the 
interproximation algorithm does not necessitate the inclusion of all these points. The point selection 
process is guided by the curvature of the edge segment. At each boundary point, a curvature is calculated 
by fitting a circle to three points: a current boundary point and two additional points that are located 𝑛-
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pixels away. The magnitude of the boundary curvature is the reciprocal of the radius of curvature, 𝜅 =
1/𝑅, nd is calculated by finding the radius of the osculating circle using three neighboring points[12]. 
When curvature is pronounced, more points are chosen; conversely, fewer points are selected. This 
criterion specifically applies to exact points, although all uncertain regions are included in the selection. 
  
Step 4. Interpoximation algorithm. 
We propose a method to assist in edge detection and object segmentation that uses an interproximation 
scheme with cubic B-spline curves, aiming at producing smooth curves over a grid of given data. This 
method combines the two classic concepts of interpolation and approximation. On one hand, a typical 
interpolation is an estimation method of constructing new data points within a range of a given set of 
known data points. Unfortunately, interpolation on its own is not suitable for solving the problem at 
hand because of the uncertainty of noisy regions and the unknown range of data points in the depth 
map. On the other hand, approximation is a data fitting method that performs data fitting by backward 
error analysis and does not guarantee that the resulting curve or surface will pass through specific 
points. This is why we use the hybrid approach of data fitting, which uses both interpolation and 
approximation. The resulting curve will interpolate exact data points and pass through uncertain regions 
in such a way that it has minimum energy at each of its piecewise components and gives a relatively 
accurate estimation of object shape [1].  

A specialized interproximation scheme with piecewise curve energy minimization using non-uniform 
cubic B-spline curves was first proposed by F. Cheng and B. Barsky [1-3] to address the problem of data 
uncertainty. The idea of having a curve passing through the exact points and uncertain regions is very 
suitable for our problem of denoising depth map data.  
 
Problem formulation 
Let {𝐷𝑒𝑝𝑡ℎ𝑖  |𝑖 = 1,2, … , 𝑛 + 𝑚} be a set of two-dimensional depth data where 𝐷𝑒𝑝𝑡ℎ𝑖 could be either a point 
or a region. We denote exact points as: 

𝐷𝑒𝑝𝑡ℎ𝑖𝑗
= 𝑃𝑗 = (𝑥𝑗 ,  𝑦𝑗) for j=1,2, …, n                                                (4.1) 

Uncertain regions could be represented by an arbitrary one-dimensional or a two-dimensional shape; 
regardless of the specific shape or size, the region is enclosed in a bounding box as shown in Figure 4 
and denoted by: 

𝐷𝑒𝑝𝑡ℎ𝑖𝑘
= 𝑋𝑘 × 𝑌𝑘 = [𝑥_𝑠𝑡𝑎𝑟𝑡𝑘 , 𝑥_𝑒𝑛𝑑𝑘] × [𝑦_𝑠𝑡𝑎𝑟𝑡𝑘 , 𝑦_𝑒𝑛𝑑𝑘] for k=1,2, …, m                    (4.2) 

 

 
 

Fig. 3: Example of a bounding polygon for an uncertain region. 
 

We adhere to the conventional interpolation scheme to construct an open or closed cubic B-spline curve 
comprising of n+m endpoints and n+m-1 for an open curve and n+m for a closed curve piecewise 
segments to fit given data. Such a B-spline requires n+m+2 contributing base functions of degree three 
and n+m+6 parametric knots. We denote the set of parametric knots in the range from 0 to 1 generated 
using the centripetal parameterization technique [4, 6]:   

𝑇 = {𝑡−2,  𝑡−1,  𝑡0,  𝑡1 … ,  𝑡𝑛+𝑚,  𝑡𝑛+𝑚+1,  𝑡𝑛+𝑚+2,  𝑡𝑛+𝑚+3}                                 (4.3) 
B-spline is constructed using contributing basis functions, which are defined by the recurrence relation: 

(1) Base case. Reduction of the degree of the basis function stops when it reaches a degree of zero 
and is represented by a line having a value of one at the starting knot and zero elsewhere. 
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𝑁𝑖,0(𝑢) =  {
1    𝑓𝑜𝑟 𝑡𝑖 ≤ 𝑢 < 𝑡𝑖+1

0                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
                                                     (4.4) 

(2) Recursive case. Computation of each of the following basis function depends on the two 
previous functions of lower degree: 

𝑁𝑖,𝑘(𝑢) =
𝑢−𝑡𝑖

𝑡𝑖+𝑘−𝑡𝑖
𝑁𝑖,𝑘−1(𝑢) +

𝑡𝑖+𝑘+1−𝑢 

𝑡𝑖+𝑘+1−𝑡𝑖+1
𝑁𝑖+1,𝑘−1(𝑢)    𝑓𝑜𝑟 𝑘 ≥ 1                              (4.5) 

For the system of equations, the dimension of piecewise B-spline curve is 𝑛 + 𝑚 + 2, but we only have 
𝑛 + 𝑚 fitting conditions. The solution for that, as in traditional interpolation, is to impose two extra end-
conditions; 2nd derivative at the first and the last knots should be equal to zero: 

𝑓(2)(𝑡1) = 0  𝑎𝑛𝑑  𝑓(2)(𝑡𝑛+𝑚) = 0                                                    (4.6) 
Therefore, given a set of exact points and a set of uncertain regions, f(u), a two-dimensional cubic B-
spline curve is defined by the sum of its piecewise components with respect to the knot sequence: 

𝑓(𝑢) =  ∑ 𝑖𝑔𝑖(𝑢) +  ∑ 
𝑗
ℎ𝑗(𝑢)     𝑓𝑜𝑟 𝑢 ∈ [0,1]   𝑚

𝑗=1        𝑛
𝑖=1                               (4.7) 

where 𝑖 and 
𝑗
 are two-dimensional control points and 𝑔𝑖  and ℎ𝑗  are basis functions of degree three 

contributing to the B-spline curve in the parameter range starting at 𝑡1 up to 𝑡𝑛+𝑚 for exact points and 
uncertain regions, respectively. The problem of interpoximation can be finalized and formulated as 
follows. Given a set of data, find a B-spline curve that interpolates exact points 𝑃𝑗: 

𝑓 (𝑡𝑖𝑗
) = 𝑃𝑗         𝑓𝑜𝑟 𝑗 = 1,2,  … ,  𝑛                                                        (4.8) 

And approximates regions 𝐴𝑘 × 𝐵𝑘: 
𝑓(𝑡𝑖𝑘

) ∈ 𝑋𝑘 × 𝑌𝑘     𝑓𝑜𝑟 𝑘 = 1,2, … , 𝑚                                                    (4.9) 

The objective is to find a curve f such that it satisfies conditions (1) and (2). But for the given data set, 
there are exact points and uncertain regions, therefore, there is an infinite set of such possible B-spline 

curves. We desire to find a curve 𝑓  in a set of all possible curves F, that has the smoothest shape or the 
minimum energy [6]: 

||𝑓|| = min{  ||𝑓||  |  𝑓 ∈ 𝐹 𝑠𝑎𝑡𝑖𝑠𝑓𝑖𝑒𝑠 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 (4.8) 𝑎𝑛𝑑 (4.9)}                                 (4.10) 

Where the energy of the curve is defined by an integral: 

||𝑓|| = ∫ [𝑓(2)(𝑢)]
21

0
𝑑𝑢                                                                (4.11) 

 
Step 5. Optimization 
To perform optimization of the integral function, we use fmincon routine [12], a nonlinear programming 

solver which optimizes the objective function  ||f||  subject to nonlinear equality and inequality 

constraints. In addition, we employ an interior-point method designed for solving large-scale constrained 
optimization problems, which iteratively moves towards the optimal solution while staying within the 
feasible regions defined by customary constraints represented by boxes bounding the uncertain regions 
[12]. The algorithm balances the trade-off between feasibility and optimality, ensuring convergence 
towards a feasible solution with a minimized objective function. The output of fmincon is an optimal 
solution for -control points which is used to compute -control points for the final cubic B-spline curve 
construction. 
 

 
 

Fig. 4: Sample interpoximation results. 
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Step 6. Fill in holes and smooth ragged edges using neighborhood depth information.  
In the last step we perform depth adjustments based on depth information. False negatives, false 
positives, and uncertain depth values are targeted for adjustment. False negatives are the depth values 
which were initially identified as not being on the object but were determined to be within the object 
after the interproximation. False positives are the depth values initially identified as being on the object 
but were determined to be outside of object’s boundaries after interproximation. Uncertain depth values 
are the failed signals read by the depth sensor. All values adjustment is performed with using weighted 
differences mean algorithm: the weighing coefficient for each targeted depth value is computed as 
inverse mean value between the current depth and depths chosen from the closest neighborhood: 

𝑑𝑒𝑝𝑡ℎ′
(𝑖,𝑗) =

∑ 𝑤𝑖 ∗ 𝑑𝑒𝑝𝑡ℎ𝑖,𝑗 
𝑛
𝑖=1

∑ 𝑤𝑖
𝑛
𝑖=1

 

Where 𝑤𝑖 =  𝑘/(∑ |𝑑𝑒𝑝𝑡ℎ𝑖 − 𝑑𝑒𝑝𝑡ℎ𝑗|)𝑛
𝑗=1  and 𝑘 is some positive integer, in most cases chosen in range [1, n-

1]. This method is selected because it is less sensitive to outliers than other variations of regular 
arithmetic mean[13]. 

 

 
 

Fig. 5: Pixels identified as being within/on the boundaries of the B-Spline 

 
 
Conclusions: 
This paper addresses the challenge of edge detection and segmentation of the depth maps. Our 
innovative method integrates both local and global approaches to improve the precision of detection 
and formation of object edges represented by open or closed cubic B-spine curves. Interproximation 
results are improved by measuring the curvature of the edge segments. Thus, more points are chosen if 
the curvature is great and less otherwise. The issue of data uncertainty is addressed using interpolation 
at exact points and approximation at uncertain regions. Energy minimization is utilized to create the 
smoothest optimal curves. Future works in this direction include the extension of the algorithm into a 
three-dimensional framework, which will play a crucial role in reconstructing surfaces within the scene 
by utilizing comprehensive data integration from RGB images, depth data, lighting, and texture details. 
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