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Introduction:

Four-sided tensor-product surfaces are popular in computer-aided geometric design (CAGD) to repre-
sent complex free-form objects. Given a curve network representing the feature curves of an object or
surrounding smoothly connected surfaces, one of the major challenge in CAGD is to �ll a hollow region
using a multi-sided surface. Various approaches have been developed to resolve this problem, and each of
them comes with its own set of strengths and weaknesses. While trimming is a popular technique to �ll
the region, feature curves and their associated cross-derivatives cannot be directly manipulated [1]. In
contrast to the trimming approaches, feature curves can be directly edited in ribbon-based, multi-sided
trans�nite surfaces [2, 3, 4] while assuring positional/cross-derivative constraints.

Quality of trans�nite surfaces depend not only on the selected interpolation methods but also the
user-de�ned constraints. It has been already demonstrated that automatic setting of cross-derivatives
for ribbon-based patches improved the surface quality [5]. -Depending of the magnitudes of the cross-
derivatives, the surface obtained goes up or down, and thereby a�ecting its quality. In this work, we
�rst investigate surface quality (based on Zebra stripes - also known as re�ection lines - computed using
Rhinoceros 3D1) by modifying magnitudes of ribbon cross-derivatives. Ribbon-based trans�nite surfaces
over concave domains will then be tested.

Trans�nite surface optimization:

Given a set of boundary curves with cross-derivatives, a trans�nite surface can be interpolated between
these curves. In this work, a sphere model is utilized as its geometric properties are already known.
Choosing such known example as a test case is advantageous to investigate the interpolated surface
quality. Let there be a hexagonal hole on a sphere as shown in Figure 1a, the objective is to �ll the hole
with a trans�nite surface. Ribbon cross-derivatives can be computed using sphere normals and curve
tangents (Figure 1b), which are obtained by taking cross product between these two vectors at any curve
point.

1https://www.rhino3d.com
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Fig. 1: Given a hexagonal hole on a sphere (a), ribbon cross-derivatives are computed using normal
vectors on the sphere and curve tangent vectors.

Fig. 2: Computation of radial distance function parameters, (si, di).

In this work, we use ribbon-based trans�nite surfaces, where ribbons, {Ri}, are bi-parametric surfaces
de�ned in local coordinates (si, di) by positions, {Pi(si)}, and cross-derivatives, {Ti(si)}, as follows:

Ri(si, ri) = Pi(si) + diTi(si) (2.1)

Radial distance function is utilized to compute (si, di) given (u, v) coordinates (Equation 2.2). The
point, ei, is set by computing the intersection of the domain curve and the line de�ned by (u, v) and ci
(See Figure 2). Here, ci denotes the point of intersection when extending the adjacent domain curves.

di = |(u, v)− ei| and si = |ei − pi|. (2.2)

A special side blending function [7] is utilized to set weights of the ribbons as formulated in Equation
2.3, where Dn

i1,...,in
=

∏n
i ̸=i1,...,in

d2i .

µi(d1, · · · , dn) =
Dn

i∑n
j=1 D

n
j

(2.3)

The blending function is singular at the corner points. Thus, singularity vanishes when two adjacent
blending functions are added at the corners (See Equation 2.4).

lim
di−1→0
di→0

µi−1(d1, d2, · · · , dn) + µi(d1, d2, · · · , dn) = 1 (2.4)
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Fig. 3: Zebra stripes of Kato's trans�nite surfaces (a-c) and midpoint patches (d-f) with di�erent mag-
nitudes of ribbon cross-derivatives.

Trans�nite surface can formally be de�ned using Equation 2.5.

S(u, v) =

n∑
i=1

Ri(si, di)µ(d1, · · · , dn) (2.5)

A trans�nite surface proposed by Kato [2] is controlled/modi�ed by (1) de�ning internal constraints
(interior control) such as auxiliary vertices and curves [1] and (2) adjusting cross-derivatives [5].

Let |Ti| be the magnitudes of the ribbon cross-derivatives, Ti. We simply adjust magnitudes, |Ti|
without changing their directions. Note that cross-derivatives along a ribbon is multiplied by the same
multiplier/value.

The quality of the obtained trans�nite surfaces are investigated via Zebra stripes. Let T = (|T1|, . . . , )
denotes a set of magnitudes for ribbon cross-derivatives. When using Kato's patch to �ll a pentagonal
hole (on a spherical surface) with T = (0.48, 0.55, 0.55, 0.44, 0.58), the Zebra stripes were similar to those
of a spherical surfaces (i.e., straight from the top view) as shown in Figure 3a. While they were slightly
bent when T = (0.5, 0.5, 0.5, 0.5, 0.5) (Figure 3b). When increasing all magnitudes to 0.75, they were
warped more as seen in Figure 3c. Midpoint patch [8] was also utilized2, where the midpoint was placed
at the top of the sphere. Ribbon multipliers controlling the strength of the ribbons were 1.3, 1.4 and 1.5,
respectively, for (d), (e) and (f).

The Zebra stripes are shown in Figure 3d, which were bent as well.
Kato and the midpoint patches were further generated for the multi-sided surfaces with di�erent

number of sides. Fig. 4 (a) and (c) depict the Zebra stripes when 7 and 10-sided surfaces, where
T = (0.6137, 0.1934, 0.4527, 0.2277, 0.6085, 0.91, 0.9766) and
T = (0.6211, 0.5104, 0.3808, 0.9487, 0.3943, 0.6247, 0.5842, 0.8749, 0.4357, 0.5725), resp. As the number of

2https://github.com/salvipeter/midpoint
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Fig. 4: Zebra stripes for Kato (a, c) and the midpoint (b, d) patches for 7 and 10-sided patches.

Fig. 5: s and d-curves (blue and red curves) in the domain polygon with s and d values at the corners
.

sides increase, the surface quality deteriorates. Note that the results shown in this work were obtained
after randomly generating hundreds of solutions and selecting the one visually having better Zebra stripes.
In our experiments, straight Zebra stripes (from the top view) were better as a sphere was utilized as a test
case. Fig. 4 (b) and (d) depict the Zebra stripes for midpoint patches with 2.1 and 2.8 of the strength of
the ribbons, respectively for (b) and (d). Better surface qualities were obtained for the midpoint patches
compared to those of Kato.

Concave domains:

We further investigated the use of Kato's patch [2] over concave domains. Similar to the convex case above,
an L shape (Figure 6a) was projected onto a sphere, and ribbon cross-derivatives were then calculated
using sphere normals and curve tangents. Domain polygon was obtained by simply projecting the feature
curves (red curves in Figure 6a) onto a plane. (si, di) parameters can then not be computed using
radial distance functions as (preceding and subsequent) domain curves adjacent to a domain curve are
parallel. Therefore, harmonic functions, constrained minimizers of the Dirichlet energy [9], were utilized
to compute (si, di). Fig. 5 shows s (in blue) and d-curves (in red) for each domain curve (highlighted in
green). The values on the corners represent the constraints before computing s and d-values all over the
domain. Fig. 6 depict the resulting surface (a) (when T = (0.8, 0.8, 0.8, 0.8, 0.8, 0.8)) and Zebra stripes
for this surface (b), which were not that smooth as in the convex case.
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Fig. 6: Trans�nite surface obtained (a) and corresponding Zebra stripes (b).
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