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Introduction:

Distance computation from volume boundaries is an elementary operation in geometric modeling. How-
ever, closed-form expressions are only available in special cases and general point-boundary and boundary-
boundary queries are resolved via iterative numerical methods. Although these algorithms can satisfy
precision constraints and thus provide su�ciently accurate numerical substitutions to the real distance,
they have to interface with every geometric representation of the system. Consequently, the implemen-
tation of such algorithms is intertwined with the combinatorial complexity of the modeling system. We
propose an approach that resolves distance queries via geometric proxies and thereby the actual geo-
metric representation is opaque to the spatial query algorithm. The geometric proxies have a prescribed
order of contact with the progenitor, i.e. original geometry and o�er e�cient and closed-form distance
computation from points.

First and second order geometric proxies:

Distance �elds are a set of proxies that approximate the original shape at prescribed surface points.
Our goal is to establish a Gn continuous connection between the proxies and the original surface at
the sample points. By this we mean that in these points there exists a regular parametrization for the
proxy ensuring Cn continuity with the surface. We also want our proxies to be simple so evaluating
their distance function is computationally e�cient. Keeping these in mind we used the proxies described
below.

The �rst order proxy has to reconstruct the surface point and the normal. The simplest such G1

surface is the tangent plane, which can be de�ned by the said point and vector.
In addition to the mentioned quantities, the second-order �eld must store the principal curvatures and

principal directions. The torus serves as a simple geometry capable of achieving this, as it can represent
every combination of the sign of the curvature at its surface points, as depicted in Figure 1 (a).

The torus can be de�ned by its center, two radii and axis. However, a more �tting description for
our method is presented on Figure 1 (b), where the de�ning parameters are a surface point, the two
curvatures at that point and the axis. This also allows us to represent the degenerate cases of cylinders
and planes conveniently, where one or two of the curvatures is zero.

In conclusion the general algorithm consists of 3 steps:
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(a) We can �nd every combination of the cur-
vatures by sign on the surface of the torus.
κ = κ1 · κ2 is the Gaussian curvature

(b) The torus is represented by a p surface
point, the κr and κR principal curvatures at
that point, and the t axis

Fig. 1: The second-order �eld stores torii as they are able to represent every combination of curvatures,
and can be de�ned in a way that �ts our concept of the geometric �eld.

1. take sample points from the surface

2. obtain the necessary di�erential geometric quantities at that point

3. calculate the parameters of the geometric proxy

In the following section, we will introduce our approach of taking surface samples and the �eld
constructing method for parametric surfaces.

Converting parametric representations to proxy sets:

As for parametric surfaces, our algorithm follows the general algorithm described above. We take sample
points from the input surface, evaluate the derivatives, and calculate the proxies described in the previous
section.

To obtain sample points, we can take two di�erent approaches:

� take a uniform grid on the parameter space

� take a uniform grid in the E3 space and �nd the closest surface points (footpoints)

Opting for the �rst approach would result in unstructured data, making sampling slow, as each
geometry would need to be checked individually to �nd the right distance. This challenge could be
addressed by employing a spatial data structure, such as an octree. However, interpolation of the �eld
would be still di�cult for similar reasons.

To simplify the sampling and interpolation of the completed �eld, we opted to use a 3D uniform
grid. The center position of each grid cell was taken, and the closest surface points, the footpoints were
calculated for each.

To �nd the closest surface points we used the geometric Newton-Raphson method [1]. An outline of
the method in 2D can be seen in Figure 2. The 3D version follows a similar approach but utilizes the
tangent plane instead.

After computing the surface point and the corresponding u, v parameters we can calculate the �rst
and second derivatives from the s : R2 → E3 parametric function of the surface.
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(a) Step 1 (b) Step 2 (c) Step 3

Fig. 2: An example of the geometric Newton-Raphson method in 2D. We are looking for the closest point
to x and our intial guess is p0. The �gure shows two iterations of the method. We approximate the curve
with lines and take a closest point from them (q1, q2), then calculate the step in the original parameter
space obtaining a better approximation of the closest point (p1,p2).

The tangent plane can be de�ned with the s(u, v) footpoint and the normal vector there n =
∂us×∂vs

∥∂us×∂vs∥ .
For the second order proxy, we can compute the κ1, κ2 principal curvature values with the following

formulas. The �rst and second fundamental forms are expressed using

E = ∂us · ∂us, F = ∂us · ∂vs, G = ∂vs · ∂vs, L = ∂uus · n, M = ∂uvs · n, N = ∂vvs · n . (2.1)

The principal curvatures are then

κ1, κ2 = h±
√
h2 − g

where the Gauss and mean curvatures are

g =
L ·M− N2

E ·G− F2

h =
L ·G− 2 ·M · F+ N · E

2 · (E ·G− F2)
.

The axis of the torusis chosen as the direction of the bigger curvature.
After constructing a grid of proxies we can sample the �eld in runtime with a nearest sampling by

simply evaluating the SDFs. The distance from the proxy plane can be computed with the general
distance function. In the case of the torus, we have to separate three cases based on the curvature values:

� If κr = κR = 0, a plane is stored.

� If κR = 0, a cylinder is used

� If κr ̸= 0 and κR ̸= 0, the proxy is a torus.

We have to convert the parameters, then calculate the distances from the correct geometry. Because our
proxies only approximate the surface in a small area around the footpoint, we restricted the geometries
with a sphere by taking their intersection. This ensures that the geometries are only used in the area
around the footpoint where they ensure the required approximation order.

For smoother connection between the proxies we can use trilinear interpolation. To do this we calculate
the distances to the proxies in the 8 closest texels and interpolate the distance values.
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(a) Sphere (b) Cone (c) Bézier surface

Fig. 3: Shapes used for accuracy measurements

Test results:

To test the accuracy of our method we conducted tests on basic shapes that are common in CAGD.
Our test geometries can be seen in Figure 3. We took a �ne gird with resolution of 2173. At each grid
point, we took the ground truth and evaluated our �elds on multiple resolutions without �ltering and
with trilinear �ltering. The error was the di�erence between the ground truth sample values and the
computed distances from the lower resolution �ltered approximations. We compared error vectors using
the average ∥ · ∥1, ∥ · ∥2, and ∥ · ∥∞ norms at three di�erent resolutions with di�erent sampling methods.
The results are presented in Table 1 and 2.

Sphere

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.0019 0.003 0.00000016 0.0000001

2 0.0000093 0.000015 0 0

∞ 0.069 0.044 0.02 0.000012

323
1 0.0005 0.0008 0.0000017 0.00012
2 0.0000022 0.000013 0.0000000027 0.000014
∞ 0.033 0.29 0.0033 0.29

Cone

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.00089 0.0013 0.00055 0.00052

2 0.0000039 0.0000055 0.0000012 0.0000011

∞ 0.085 0.087 0.082 0.08

323
1 0.00036 0.00033 0.00049 0.00046
2 0.00000099 0.000001 0.000001 0.000001
∞ 0.092 0.092 0.092 0.093

643
1 0.00037 0.00034 0.00045 0.00043
2 0.00000077 0.00000089 0.0000011 0.0000011
∞ 0.073 0.11 0.11 0.1

Table 1: Accuracy measurements of the �eld generated for parametric surfaces. The table shows the
results with nearest sampling and blended Hermite interpolation as shown in [2]

The tests reveal that our method achieves high accuracy even with small resolutions. However, it is
observed that the error does not always decrease with increasing resolution and the maximum error is
high compared to the average, which can be attributed to certain limitations in our footpoint �nding
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Random Bézier surface

Res. Norm
G1 G2

nearest cubic H. nearest quintic H.

163
1 0.031 0.065 0.039 0.042
2 0.0028 0.014 0.004 0.015
∞ 0.18 0.54 0.18 0.67

323
1 0.02 0.063 0.023 0.044
2 0.0011 0.015 0.0013 0.015
∞ 0.14 0.51 0.14 0.67

643
1 0.012 0.064 0.017 0.044
2 0.00037 0.015 0.00071 0.016
∞ 0.11 0.52 0.12 0.67

Table 2: Accuracy measurements of the �eld generated for random Bézier surfaces. The table shows the
results with nearest sampling and blended Hermite interpolation as shown in [2]

algorithm. Our approach of constructing and evaluating the �eld is highly dependent on the accuracy of
the footpoints therefore even small inaccuracies can cause large errors.

Besides, the tests also show that the order 1 �eld performs better than the order 2 for more complex
shapes, due to the more robust construction algorithm.

Lastly, we can see that the simple interpolation we used does not �t the concept of the �elds at all.
The interpolation is conducted on the distance values thus we lose a lot of geometrical data.

Conclusions:

We presented a method for constructing distance �elds for parametric surfaces using order 1 proxy
geometries. Our approach demonstrated e�ciency on simple shapes and Bézier surfaces. In the future,
our plan is to improve this method by using a more stable footpoint �nding algorithm. Additionally,
we aim to apply the same approach to construct distance �elds for implicit surfaces. We also plan on
developing a �ltering technique that keeps the geometric meaning of the �eld.

Acknowledgement:

Supported by the ÚNKP-23-2 and ÚNKP-23-4 New National Excellence Program of the Ministry for
Culture and Innovation from the National Research, Development and Innovation Fund.

Anna Lili Horváth, https://orcid.org/0009-0006-2956-9227
Gábor Valasek, https://orcid.org/0000-0002-0007-8647
Róbert Bán, https://orcid.org/0000-0002-8266-7444

References:
[1] Kallay, M.: A geometric Newton�Raphson strategy,Computer Aided Geometric Design, 2001.

https://doi.org/10.1016/S0167-8396(01)00070-X

[2] Valasek, G. and Bán, R.: Higher Order Algebraic Signed Distance Fields, Computer-Aided Design
and Applications, 2023. https://doi.org/10.14733/cadaps.2023.1005-1028

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 189-193
© 2024 U-turn Press LLC, http://www.cad-conference.net

https://orcid.org/0009-0006-2956-9227
https://orcid.org/0000-0002-0007-8647
https://orcid.org/0000-0002-8266-7444
https://doi.org/10.1016/S0167-8396(01)00070-X
https://doi.org/10.14733/cadaps.2023.1005-1028
http://www.cad-conference.net

