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Introduction:

For CNC machining, to select a toolpath, it is useful to identify the high-level machining features required
to manufacture a part. For example, given knowledge that a set of faces require a pocketing operation
to construct, there are empirical and mechanistic models [6] that can make decisions about tool type,
tool shape and depth of cut automatically. If machining features can be identi�ed automatically, curve
generation algorithms can be implemented with fewer human decisions, reducing manufacturing costs for
small- and medium-sized manufacturing companies.

Yeo et al. [9] developed a model that used machine learning to automatically identify machining
features in a dataset of synthetically generated CAD �les. Once trained, a CAD model could be encoded
using the scheme developed by Yeo et al., and provided as an input to a machine learning model, which
could identify which machining features, if any, could likely be found at a particular location of a given
CAD �le.

The approach proposed by Yeo et al. was successful at identifying machining features in synthetic
CAD �les with an accuracy of 93%. This is an impressive result, and indicated machining features can
be accurately identi�ed using a machine learning-based approach. However, the research conducted by
Yeo et al. was limited to training and testing on a single synthetically generated dataset. This approach
was successful in creating a large number of complex machining features for which to train on, but was
limited based what set of features could be described using this algorithm.

To develop a system that is more useful for small- and medium-sized manufacturing businesses, an
extension to the work developed by Yeo et al. is presented. To achieve such an improvement, a model
was developed and validated using training data extracted from an existing dataset of generic human-
created CAD �les, to avoid the concerns about training on a synthetically generated training dataset. The
machine learning model of Yeo et al. was augmented with a variety of data pre-processing and canonical
machine learning techniques, to improve the classi�cation of features.

Next, to estimate the classi�cation performance of the system in a real-world environment, a dataset
of real-world CAD �les was collected and tagged using the same feature encoding approach. The model
trained on the generic dataset was used to classify features from the real-world dataset. To improve the
classi�cation accuracy of real-world machining features, a re-training approach was developed that could
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be easily integrated with a hypothetical machinist work�ow. In this way, a scalable machining feature
recognition system that can identify machining features in real-world CAD �les of machined parts was
developed.

Machine Learning

The goal of machine learning is to identify patterns in a set of data to automatically make decisions. In
some cases, the pattern recognition can take the form of segmenting the data based on their similarity
into groups called classes. This approach is known as unsupervised learning. In other cases, a designer
may wish to specify associations between classes and data points. This approach is known as supervised
learning. One of the earliest approaches to supervised learning draws inspiration from the human brain.
Neural networks use simpli�ed models of neurons arranged in a network to learn about a system. One of
the simplest approaches is known as a feed-forward neural network. During training, information encoded
as a vector of values is passed into an input layer of neurons, which signal to subsequent neurons based
on the magnitude of the inputs. These signals propagate through the network, though multiple layers
of neurons, into one or more output neurons. Each time a signal is passed from one neuron to another
the signal is scaled by a connection weight, which can be initialized with some scheme or randomized at
the start of training. The output from the network is compared to the tag associated with that training
sample, and an error value is computed. The errors are then passed through the network backwards,
scaled by the existing network weights, until adjustments to every weight are calculated. This scheme is
repeated for each sample in the training data set, referred to as an epoch.

When constructing a machine learning system, it is necessary to format the training data so that the
data best �ts the problem domain and learning technique. For a classi�cation problem, such as selecting
which of a set of common objects are in an image, a vector of binary values associated with each possible
object can be tagged to each image, with each element in the vector indicating the presence or absence
of a particular object. In the case where only one class can be present at a time (such as in the case of
many implementations of machining feature recognition systems) a 1-of-n encoding scheme is used. A
1-of-n encoding scheme takes the structure of a binary label vector, in much the same way as the previous
example, but where only exactly one element in the vector is labelled as 1.

Once an encoding scheme has been selected, several approaches can be used to augment the data so
that the data better represents the problem domain and can be used to train an e�ective classi�er. If
multiple samples are present in the dataset that are identical, the resulting model can place a greater
emphasis on correctly identifying those samples, at the expense of distinguishing between subtle di�er-
ences between similar classes. Instead, researchers often remove duplicate samples from their dataset.
Similarly, techniques have been proposed that pull from the domain of genetics to recombine samples of
the same classes into new generations of arti�cial data, based on the distribution of values in the parent
training samples [7]. This approach is known as crossover.

Overtraining is a description of a machine learning model that, instead of learning the underlying
properties of a given domain, learns some properties present in the dataset that are not generalizable.
There are two common ways to combat overtraining. First, when calculating the output for a training
sample, an algorithm can randomly select some internal neurons to output no signal, typically with a
likelihood of around 5 percent. This approach is known as dropout [2]. Second, instead of evaluating the
performance of a model based on its ability to classify the data it was trained on, researchers typically
split data into three groupings: a training set, a validation set, and a test set. The training set is used
to train the model. The validation set is used to make changes to the model to improve its performance.
Once a model is trained, the test set is used to evaluate its classi�cation performance.

When there exists a risk that small changes in the composition of the dataset may signi�cantly impact
the validation accuracy, a more robust testing approach may be selected. K-fold cross validation is an
approach that involves training and validating the same dataset multiple times, and averaging multiple
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validation accuracy values to produce a better estimate of the model performance.
An alternative approach for implementing a supervised learning system is a decision tree. Unlike

neural networks, decision trees are simpler to implement, do not require many training iterations, and
once constructed can be easily interpreted by a human. However, as a consequence of their simplicity
decision trees are often not as e�ective in learning subtle di�erences between classes. Despite this, decision
trees can be useful in scenarios where the complexity of a neural network is not required.

Transfer learning describes a process by which a model is trained on a set of data collected under a
speci�c set of conditions and evaluated based on its performance in a wider variety of new conditions [1].
This property has bene�ts for a machining feature recognition system, since computer aided design (CAD)
�les used for training are often proprietary and di�cult to obtain in large quantity. When a transfer
learning system is insu�cient to e�ectively distinguish between classes in a speci�c domain, additional
incremental learning can also be applied [5]. Incremental learning refers to training an existing model
using domain-speci�c training data, to augment the classi�er for that speci�c scenario.

Summary of Extensions

This paper extends the work by Yeo et al. [8] to develop a machine learning-based machining feature
recognition system that can operate on B-Rep models of real-world machined parts encoded in a STEP
�le format. We used a supervised learning, feed forward neural network, with a 1-of-n encoding scheme,
and tested a variety of machine learning techniques, including crossover, dropout, decision trees, transfer
learning, and incremental learning, using 5-fold cross validation to score each test. Our extension presents
a technique for classifying machining features in B-rep models of real-world machined parts, without
training on a synthetic dataset with particular domain characteristics. Instead, our approach learns using
real-world B-Rep model examples, and in so doing is scalable to a variety of manufacturing domains. To
investigate the scalability of the system, an exploration of the ability of the classi�cation system to
transfer learning between datasets, as well as the rate at which the system can learn when adapting to a
new sample domain will also be discussed.

Dataset Creation

Yeo et al. [9] used an automated data generation technique to generate as much training data as possible,
to maximize the likelihood that the dataset is fully representative of all possible CAD �les and their
constituent machining features. Generating the data automatically has the bene�t of being able to
generate a dramatically large number of parts (in Yeo et al.'s case, 170 000 unique CAD �les), but poses
a challenge when attempting to transfer the learned features to real-world CAD models.

To build a real-world CAD model dataset, we explored multiple existing CAD model research datasets,
and eventually chose the ABC Dataset. The ABC Dataset (A Big CAD Model Dataset) is a collection of
3D models from the online CAD platform OnShape that were collected and published by Koch et al. [3].
The models contained in this dataset are published in a variety of formats including .step, which encodes
the necessary parametric geometry information for extracting machining features.

77 CAD �les that included CNC machining features were select from the ABC dataset. These �les
were tagged and encoded with the 17 machining features of Yeo et al. [8], giving 860 machining feature
samples in the training dataset. In addition, another 77 �les were collected from machine shops at the
University of Waterloo, Hurco Inc. and Perfecto Manufacturing Inc. These �les were tagged, and a
dataset containing 998 real-world machining features was produced. This dataset of machining features
extracted from real-world parts remained separate from the 860 features collected from the ABC dataset.
In total, 1858 machining features were included in both datasets used in this research.

Once a dataset of CAD �les tagged with their respective machining features was created, an encoding
program was developed to extract relevant information from the parametric models based on the approach
outlined by Yeo et al. In total, a 61-length feature vector is created.
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Fig. 1: Deep learning network architecture.

Machine Learning Model

A fully connected feed-forward neural network (illustrated in Figure 1) was constructed. The network
parameters are selected to match the conditions outlined by Yeo et al. In particular, the number of nodes
in each layer are selected to match the number of nodes determined by Yeo et al. to yield the greatest
classi�cation accuracy. A 61-deep input layer is connected to 5 hidden layers, which are connected to an
output layer.

Some changes were also made to the network hyperparameters outlined by Yeo et al. To minimize
the likelihood of overtraining, the training batch size was reduced from 8 to 1. The system was trained
with 0% dropout, as originally selected by Yeo et al., and compared with models trained with 10% and
20% dropout, to determine if dropout can be e�ective in reducing overtraining. Some machining features
(such as tapered holes) had limited representation in the training dataset generated from CAD �les in
the ABC dataset, and as such would be inadequately classi�ed by the learning system. To evaluate the
relative performance of several potential model improvements, the 17 machining features proposed by Yeo
et al. were consolidated into 5 generic machining features. To accommodate this change in the number
of classes, the output layer depth of the machine learning network was reduced from 17 to 5.

Results and Conclusions

Three extensions to the system developed by Yeo et al. were evaluated in this work: the incorporation of
dropout, the introduction of an ID3 tree pre-classi�cation step, and the inclusion of additional training
data using crossover data generation. Dropout was determined to improve the consistency of feature
classi�cation. Yeo et al. determined there was no bene�t of incorporating dropout when training their
model on synthetically generated machining feature data. In contrast, this work found evidence that the
consistency of classi�cation accuracy during training improved when 10% dropout was incorporated in
models trained on real-world data. In addition, incorporating an ID3 tree pre-classi�cation step before
training a machine learning classi�er was e�ective at reducing model training time, without reducing
classi�cation accuracy. Crossover data generation was deemed to not have any signi�cant bene�ts for
model classi�cation accuracy or scalability.

The augmented feature recognition model was trained on generic CAD �les, and used to classify
machining features from real-world CAD �les. Without any additional training, the augmented classi�er
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was unable to identify machining features consistently. The classi�er was re-trained using machining
features collected from real-world CAD �les. The re-trained classi�er was signi�cantly more e�ective at
identifying machining features.

Re-training existing machining feature recognition models has signi�cant future potential. A simple
machining feature recognition model can be developed using a limited dataset of machining features, and
re-trained based on the actions of a machinist selecting features in a CAM program. Collecting data in
this way has several bene�ts. First, the concerns associated with training a model on CAD �les with
intellectual property protections can be mitigated by re-training the feature recognition system locally.
Second, re-training can be done on-the-�y, without interrupting the work of a machinist. Finally, re-
training can be used to tailor a feature recognition model to a speci�c work�ow or industry, incorporating
automatic feature detection into an existing work�ow only when the historical classi�cation accuracy for
a particular machining feature reaches a threshold determined by the user.
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