
174

Title:
With or Without edges? Data Structure for Global Mesh Operations

Authors:
Gábor Fábián, insomnia@inf.elte.hu, ELTE Eötvös Loránd University, Budapest, Hungary

Keywords:
triangle mesh, mesh processing, topology, subdivision, half-edge

DOI: 10.14733/cadconfP.2024.174-178

Introduction:

In this paper, we design a data structure for representing polyhedra that allows the e�cient execution
of global operations. Our research is motivated by the following contradiction. In computer-aided design
or modeling tasks, we generally represent surfaces using edge-based data structures as Winged edge
[1], Half-edge [5], or Quad-edge [2]. In contrast, real-time computer graphics represents surfaces with
Face-vertex meshes, since for surface rendering, there is no need for the explicit representation of edges.

In most cases, when mainly local modi�cations are used (e.g. vertex split, edge �ip, face removal),
traditional winged edge and Half-edge data structures perform well. However, for global operations
(a�ecting large number of vertices, edges, faces), the advantages of edge-based data structures seem to
diminish. In this research we will show a novel data structure for representation of triangle meshes, that
is based on the concept of face-vertex meshes. We will discuss, what additional topological information
need to be stored to obtain fast traversal algorithms.

In our experiments we used an e�cient Half-edge implementation, and we implemented our proposed
data structure. We have done several tests to measure time cost of some global operations. We compared
the performance of the data structures for some complex manipulations as subdivision. Our results
con�rmed, that many operations can be easily implemented and e�ciently performed without explicit
representation of edges. Moreover, our surface representation stores less data than the Half-edge data
structure.

Half-edge data structure

The Half-edge data structure is suitable for storing orientable 2-manifolds de�ned by polygonal faces
[6]. As we will soon see, this representation e�ectively takes advantage of these properties. Let us assume
that each edge is shared by exactly two faces (which means, the mesh is 2-manifold), and the orientation
of the common edge is opposite on these two faces (which means our mesh is an orientable 2-manifold).
See e.g. [3] for the detailed explanation of these topological properties. In this representation each edge
is "split in two" obtaining the so-called half-edges, the central elements of the data structure. For each
half-edge, we store the starting vertex (vertex), the associated face (face), its oppositely oriented pair
(twin), and the next half-edge (next), as you can see on Fig. 1.

Faces and vertices store only a reference to a corresponding half-edge to which they are connected.

SolidMesh data structure

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 174-178
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


175

Fig. 1: The local neighborhood of (a) an h Half-edge; (b) a v vertex; (c) an f face in Half-edge data
structure.

When designing our data structure, we formulated the following requirements.

1. The representation should based on the vertex and index-arrays used by the GPU.

2. Edges should not be explicitly represented.

3. A �xed amount of data should be stored for faces and vertices.

4. Global operations should be performed quickly.

Condition 1. and 2. imply, that the central elements of our data structure are necessarily faces. Condition
3. can not be ful�lled, unless each face has a same number of vertices. Since every polygonal face can be
decomposed into triangles, we choose triangular faces.

In the Half-edge data structure, geometric information of a neighborhood of an edge is encapsulated
into half-edges. In the implementation of our data structure, we did not create a new face class, which
would achieve similar encapsulation. Instead, we added some extra (one- and multi-dimensional) arrays
containing all the necessary geometric information to the vertex and index-arrays. The following section
describes how our data structure is created, which is suitable for storing and manipulating orientable com-
pact 2-manifolds de�ned by triangular faces. It is important to note that the surface of a solid geometry
is orientable compact 2-manifold, and conversely, each non-self-intersecting connected orientable compact
2-manifold de�nes a solid. Our data structure is designed speci�cally for storing and manipulating the
surfaces of such solid geometries, where we extensively utilize these topological properties. Therefore, we
will refer to this representation as SolidMesh in the following.

Maybe the simplest approach is to de�ne the SolidMesh data structure using functions with �nite
domains. Let us suppose, that I = {0, . . . , n− 1}, J = {0, . . . ,m − 1} and τ = {0, 1, 2}. Then a the
common representation of a mesh in computer graphics is a (V, T ) pair, where the V vertex-array and the
T index-array can be de�ned by the following functions: V : I → R3 and T : J × τ → I. The I, J sets
refer to the indices of the vertices and triangles, the τ set is responsible for storing the order of vertices
within a triangle. τ is similar to the ring of integers modulo 3, we de�ned the addition for any k ∈ Z as

∀j ∈ τ ∀k ∈ Z : j ⊕ k := (j + k) mod 3.

We found, if we de�ne our data structure with the following functions, we achieve a similarly strong
topological descriptive capability as in the case of the Half-edge structure.

� V : I → R3 : the vertex coordinates. V (i) ∈ R3 de�nes the position of the i-th vertex.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 174-178
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


176

Fig. 2: The local neighborhood of (a) the j-th triangle; (b) the i-th vertex in SolidMesh data structure.

� T : J × τ → I3: the index triplets of the faces. Let us suppose that the j-th triangle of our surface
is spanned by the V (p), V (q), V (r) vertices (p, q, r ∈ I). This fact can be formulated as follows:

T (j, 0) = p ∧ T (j, 1) = q ∧ T (j, 2) = r.

The edges determined implicitly by T . We will assume that the k-th edge of the j-th triangle is a
directed edge from V (T (j, k)) to V (T (j, k ⊕ 1)) for k = 0, 1, 2.

� A : J × τ → J : the triangle adjacents of the triangles. A(j, k) = p if and only if the j-th triangle is
adjacent to the p-th triangle, and their shared edge is the k-th edge of the j-th triangle.

� α : J × τ → τ : the edge index of the adjacent triangle. α(j, k) = q if and only if the shared
edge between triangles j and A(j, k) is the q-th edge of the adjacent (A(j, k)-th) triangle. By the
de�nition of T,A, and α, we get

T (j, k) = T (A(j, k), α(j, k)⊕ 1), and T (j, k ⊕ 1) = T (A(j, k), α(j, k)).

� B : I → J : face index for a vertex. B(i) = j means that the V (i) vertex is a vertex of the j-th
triangle.

� β : I → τ vertex index for a vertex. β(i) = q means that the V (i) vertex is the q-th vertex of the
B(i)-th triangle, i.e.

T (B(i), β(i)) = i.

� d : I → N: degree of vertices. The V (i) vertex has exactly d(i) vertex neighbours.

Formally, our mesh representation is a (V, T,A, α,B, β, d) tuple. Since (V, T ) is the common representa-
tion of a surface in computer graphics, V and T can be considered as the vertex-array and the index-array,
we pass to the GPU for rendering.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 174-178
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


177

Loop subdivision

Due to content constraints, we cannot present the results of all our measurements, nor the details
of individual algorithm implementations; these will be included in the full paper. Now we give a rep-
resentative example, the application of the Loop subdivision scheme [4]. Loop subdivision is a global
operation de�ned for a polyhedron de�ned by triangular faces. In each step of the subdivision algorithm,
the following operations are performed.

Fig. 3: Loop subdivision

1. Create a new vertex on each edge.

2. Connect the new vertices to split each triangle into 4 smaller triangles (see Fig. 3 (a)).

3. Calculate the positions of the new vertices as the barycentric combination of the two vertices
spanning the edge and the third vertices of the triangles that are sharing the edge (see Fig. 3 (b)).

4. Recalculate the positions of the old vertices as the barycentric combination of the adjacent old
vertices (see Fig. 3 (c)).

As we can see, the subdivision operation is not trivial; we need to break down every face of the
polyhedron and compute the coordinates of every vertex (new and old). By calculation of vertex positions
the edge-adjacent triangle pairs play an important role, therefore the Half-edge data structure is often
chosen for implementing this subdivision scheme. The operation of the algorithm illustrated in Fig. 3.

Results

Our results seem to support that, despite the lack of explicit edge representation in our data structure,
subdivision can be executed much faster with it. According to our measurements, the Loop subdivision
implemented in SolidMesh data structure ran approximately 5-10 times faster than the Half-edge imple-
mentation, as you can see in Fig. 4 and in Table 1.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 174-178
© 2024 U-turn Press LLC, http://www.cad-conference.net

http://www.cad-conference.net


178

Model Number of Subdivision time [ms]
name vertices Half-edge SolidMesh
Cube 8 0.10 0.02

Sphere 482 5.63 0.79

Torusknot 880 11.36 1.46

2-tori 1156 14.37 2.05

Bunny 2503 34.78 4.81

Ducky 5084 60.87 8.83

Mug 6390 71.99 11.12

Armadillo 15002 370.69 31.74

Table 1: Time costs of Loop subdivision Fig. 4: Results visualized on a log-log graph

This extended abstract contains only one interesting result; the implementation details and further
measurement results will be available in the full paper. Similar results were obtained for other global
operations: many important operations can be performed signi�cantly faster in SolidMesh data structure,
and e�cient implementation of local operations is also possible. Moreover, this data structure has a
smaller storage requirement than the Half-edge.

Acknowledgement:

Supported by the ÚNKP-23-4 New National Excellence Program of the Ministry for Culture and Inno-
vation from the source of the National Research, Development and Innovation Fund.

Gábor Fábián, https://orcid.org/0000-0003-0255-5379

References:
[1] Baumgart, B. G.: A polyhedron representation for computer vision. In Proceedings of the May 19-

22, 1975, National Computer Conference and Exposition (AFIPS '75). Association for Computing
Machinery, New York, USA, 1975, 589�596. https://doi.org/10.1145/1499949.1500071

[2] Guibas, L.; Stol�, J.: Primitives for the manipulation of general subdivisions and the
computation of Voronoi diagrams, ACM Transactions on Graphics, 4(2), 1985, 74�123.
https://doi.org/10.1145/282918.282923

[3] Lee, J. M.: Introduction to Topological Manifolds, Graduate Texts in Mathematics, Springer, 2000.

[4] Loop, C. T.: Smooth Subdivision Surfaces based on Triangles, M.S. Mathematics thesis, University
of Utah, USA, 1987.
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/thesis-10.pdf

[5] Müller, D. E.; Preparata, F. P.: Finding the intersection of two convex polyhedra, Theoretical Com-
puter Science, 7(2), 1978, 217�236. https://doi.org/10.1016/0304-3975(78)90051-8

[6] Mäntylä, M.: An Introduction to Solid Modeling, Principles of computer science series, Springer,
Computer Science Press, 1988.

Proceedings of CAD'24, Eger, Hungary, July 8-10, 2024, 174-178
© 2024 U-turn Press LLC, http://www.cad-conference.net

https://orcid.org/0000-0003-0255-5379
https://doi.org/10.1145/1499949.1500071
https://doi.org/10.1145/282918.282923
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/thesis-10.pdf
https://doi.org/10.1016/0304-3975(78)90051-8
http://www.cad-conference.net

