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Introduction:

Virtually all CAD/CAM software o�er options for generating tool paths for pocket machining. However,
while these paths can be expected to be correct from a purely geometric point of view, they do not
necessarily take into account key process parameters like the cutting width and the tool engagement
angle. The radial width of cut, υ, frequently simply called cutting width, is commonly de�ned as the
radial amount of the tool that is engaged in the material; see Fig. 1a. However, the actual immersion
depth δ may be substantially larger than υ. Hence, the actual cutting forces are better re�ected by the
tool engagement angle θ: It is the angle subtended by the circular arc that corresponds to the contact
surface of the tool disk with the material being machined. (In Fig. 1, this arc is shown in dashed green.)
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Fig. 1: Cutting width υ and engagement angle θ for the motion of a tool (depicted by a red disk) along
a tool path (shown in purple). The old machining contour is denoted by MC and the new contour is
denoted by MC ′. The unmachined material is shaded grey.

Our Contribution:

Little is known on global strategies to generate tool paths for pocketing such that a user-speci�ed max-
imum engagement angle is not exceeded. Most pocketing papers either ignore the engagement angle
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completely or provide only heuristics. We provide an extension of the (one-sided) MATHSM pocketing
strategy by Elber, Cohen and Drake [1] for pockets bounded by straight-line segments and circular arcs.
Rather than blindly resorting to some �xed constant step-over distance, we adapt the step-over distance
between each pair of subsequent circular path segments such that the tool engagement angle reaches but
never exceeds a user-speci�ed limit. As a more global optimization we keep track of the area already
machined. This allows to increase the step-over distance even further if previous machining operations
in other parts of the pocket have already covered some portion of the material that is currently to be
removed. By analyzing the pocket geometry we are able to dynamically adapt the limit on the engage-
ment angle depending on the �narrowness� of parts of the pocket. (These improvements of our standard
algorithm are not discussed in this extended abstract, though.) Experiments show that our improve-
ments tend to result in substantially shorter tool paths compared to our implementation of the original
MATHSMmethod, while guaranteeing that the engagement angle does not exceed the user-speci�ed limit.

Tool Path Computation:

We study tool paths for pockets P (without holes) bounded by straight-line segments and circular arcs.
The pocket boundary ∂P is assumed to be one Jordan curve that is oriented counter-clockwise (CCW).
This orientation imposes an orientation of the straight-line segments and circular arcs of the boundary
in a natural way. We call a circular arc concave if it is oriented clockwise (CW), and convex otherwise.
We assume that the radii of all convex arcs are greater than the radius r of the tool. (Otherwise the
pocket cannot be machined completely with that tool without gouging.) Our tool paths are suitable
for conventional milling. It would be straightforward to modify our approach such that climb milling is
supported.

As usual, a disk centered at a point p within (the closure of) P is called a clearance disk if the
entire disk is completely contained inside (the closure of) P and if its radius cannot be enlarged without
protruding outside of P. The radius of the clearance disk of a point p is called the clearance distance of
p. Roughly, the medial axis of ∂P (within P) is given by the union of the centers of all those clearance
disks of P which touch ∂P in at least two disjoint points. The medial axis is a subset of the Voronoi
diagram of ∂P, and it can be derived easily from the Voronoi diagram. We refer to Held [2] for a detailed
discussion of Voronoi diagrams, medial axes and their use for o�setting. Our own implementation relies
on Voronoi diagrams and medial axes computed by means of Vroni/ArcVroni [3].

Consider a point ci−1 with clearance disk Ai−1 and clearance distance ρi−1+r within P (for ρi−1 > 0).
The circleMi−1 centered at ci−1 with radius ρi−1 is the machining circle of ci−1, and ci−1 is its machining

center. Similarly for some other machining center ci and its machining circle Mi; cf. Fig. 2. These
machining circles are the main curves used by the MATHSM algorithm by Elber, Cohen and Drake [1]
to move the tool disk. In order to end up with one continuous path, two subsequent machining circles
Mi−1 and Mi are linked by a transition element Ti−1 as follows: The o�set curve for o�set distance r is
intersected with the line segment between ci−1 and pi−1, yielding a point qi−1. Similarly we get qi as the
intersection of the line segment between ci and pi with the o�set curve. Then Ti−1 is obtained by moving
along the o�set curve from pi−1 to pi in CCW manner. This construction yields the following part of
a trochoidal tool path: The center of the tool starts at qi−1, moves along Mi−1 once in CCW direction
until it returns to qi−1, and then proceeds along the transition element Ti−1 to qi. From there it would
continue CCW along Mi, etc.

It is obvious that a distant spacing of the machining circles as shown in Fig. 2 would not be suitable
for a real machining process. For the one-sided MATHSM, Elber et al. [1] place a machining center ci
such that it is the midpoint of qi and the (closest) intersection point mi of the medial axis of P with the
line through pi and ci. Thus, the line segment between mi and qi forms a diameter of Mi with center ci;
see Fig. 2. The actual spacing of the machining centers is not discussed in [1]. However, comments in
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Fig. 2: The basic building blocks of a MATHSM path: Two subsequent machining circles Mi−1 and Mi

and the transition element Ti−1 (in turquoise) for linking them. The pocket boundary ∂P is indicated
by a dark green line and its o�set curve (for o�set distance r) is drawn as a dashed turquoise line. The
three small red circles depict the tool disk.

its section on extending the basic MATHSM algorithm suggest that some (unknown) constant spacing is
applied, either with ∥ci− ci−1∥ or with ∥mi−mi−1∥ being constant. In the end of their paper, they com-
ment that a dynamic strategy that adapts the spacing distances according to machining parameters can
be expected to be bene�cial. We pick up this lead and extend their MATHSM algorithm such that a spac-
ing of the machining centers is obtained that keeps the tool engagement angle below a user-speci�ed limit.

Computing the Engagement Angle:

Suppose that the tool with radius r has moved along the machining circle Mi−1 with radius ρi−1 centered
at ci−1, and suppose that all material within the circle Ai−1 has been removed. Let q be a position of
the tool center on Mi for which cutting occurs. We denote the intersections of the tool circle with Ai−1

by a and b, with b being that point the tool has not yet swept over, cf. Fig. 3a. The intersection point
of the ray from ci through q with Ai is denoted by w. Then the engagement angle of the tool centered
at q is given by the angle θ := ∠bqw at the vertex q of the triangle ∆(b, q, w). We note that �xing the
position of q on Mi also �xes the position of b on Ai−1, and vice versa.

For which position q of the tool center on Mi is θ maximized? Trivially, maximizing θ is equivalent to
minimizing the angle ∠ciqb at the vertex q of the triangle∆(ci, q, b). By construction, we have ∥q−ci∥ = ρi
and ∥q− b∥ = r. That is, these two edges of ∆(ci, q, b) have �xed constant lengths. We conclude that the
angle ∠ciqb is minimum exactly if the edge length ∥b − ci∥ is as short as possible. This happens when
the points ci−1, ci and b are collinear and occur in that order along the common line.

However, naïvely placing q on Mi such that ci−1, ci and b are collinear may lead to an overestimation
of the maximum engagement angle that occurs while moving the tool along Mi: Figure 3c shows a setting
where w ends up within Ai−1. Since the tool does not interact with the material at w, the angle ∠bqw
exceeds the true engagement angle for this tool position. Now recall that moving b away from the line
through ci−1 and ci (along Ai−1) causes the engagement angle to decrease. Hence, we move b in CCW
direction along Ai−1 just far enough to allow w to coincide with the intersection of Ai−1 and Ai. This
approach can be cast into explicit formulas for θ in dependence on the machining center ci and radius ρi.

Determining the Next Feasible Position of a Machining Circle:

We are now ready to describe how the next machining center ci is determined such that the maximum
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Fig. 3: Computing the maximum tool engagement angle when the (red) tool disk is moved CCW along
the machining circle Mi. In (a) the setting is shown for a position q of the tool center; the engagement
angle θ is given by the angle ∠bqw. The material yet to be removed is shaded grey. For the same
geometric setting of Mi−1 and Mi and the same tool radius, in (b) the tool position q for which the
maximum engagement angle relative to Ai−1 is assumed is shown. Sub�gure (c) shows a setting for
which the engagement angle would be overestimated if ∠bqw would be considered because w lies within
Ai−1. For this setting the correct maximum engagement angle is shown in (d).

engagement angle θ stays below a user-speci�ed limit θmax < 180. (If θmax := 180 then full slotting moves
were allowed and no tool path would exceed this limit.) No machining occurs if ∥ci − ci−1∥ = 0 and,
thus, θ = 0. The maximum engagement angle starts to grow as soon as ci is moved away from ci−1 in the
direction of the unmachined material. The explanation given in the previous section allows to compute
the maximum engagement angle θ for any machining center ci (relative to ci−1 and ρi−1). Unfortunately,
we have not been able to �nd a closed-form solution for the inverse problem: Given θmax, compute ci
such that moving the tool along Mi centered at ci results in a maximum engagement angle θ = θmax.

As illustrated in Fig. 2, the MATHSM algorithm places ci on a �middle� curve between the medial
axis of P and ∂P: The machining center ci is at a distance ρi from the point mi on the medial axis and
at a distance ρi+ r from its normal projection pi onto ∂P. Standard mathematics implies a trivial upper
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bound on the maximum permissible distance d of ci from ci−1: We have d < 2r+ ρi−1. If the distance d
exceeds 2r + ρi−1 then a full slotting move occurs and the engagement angle is guaranteed to be 180◦.

Summarizing, for d := 0 we have θ = 0 and for d := 2r + ρi−1 we have θ = 180. Hence, we apply
bisection to �nd a suitable spacing distance d between ci−1 and ci such that θ = θmax. Experience drawn
from myriads of invocations of the bisection routine tells us that the bisection needs 9�18 iterative steps
to converge. Of course, we do not attempt to model the �middle� curve between the medial axis and
∂P explicitly as the loci of all potential machining centers. Rather, in parallel we move away from pi−1

along ∂P (in CCW direction) towards pi and accordingly from mi−1 along the medial axis towards mi.
This traversing of the medial axis required for locating mi is very similar to the traversing required for
o�setting, and we refer to literature on Voronoi-based o�setting for details; see, e.g., [2].

Results Obtained:

We implemented our algorithm in C++. As already stated, Voronoi diagrams and medial axes are com-
puted by means of Vroni/ArcVroni [3]. A constant spacing of the machining centers rather than a
spacing based on the maximum engagement angle allows us to use our implementation to generate paths
that mimic the original MATHSM algorithm.

In our experiments we studied the lengths of the tool paths and the distributions of the engagement
angles along the paths. While summing the lengths of the individual straight-line segments and circular
arcs su�ces to compute the length of a path, assessing the engagement angles along a path requires
a higher e�ort. For the sake of implementational simplicity, we compute the engagement angles for a
myriad of densely spaced positions of the tool center along a path.

Since there is no apparent relation between the constant spacing d of the machining centers and the
resulting maximum engagement angle for the MATHSM algorithm, we resorted to a brute-force solution:
We varied the value d in tiny increments from small to large (relative to the tool radius and the geometry
of a pocket), computed for every value of d the MATHSM path and recorded its maximum engagement
angle (and its length).

This allowed us to compare our paths to the MATHSM paths such that all paths respect the same
maximum engagement angle θmax. In Fig. 4, sample paths are shown for θmax := 80. In the �gures,
the start chosen for the tool path is depicted by a red tool circle and a red cross; it would be suitable
for a spiral-down motion of the tool within a disk whose diameter matches roughly the tool diameter.
Glancing at these two paths makes it immediately apparent that the path generated by our approach is
substantially shorter than the MATHSM path that respects the same value of θmax.

Figure 5 plots the engagement angles for hundreds of consecutive tool positions along the tool paths
for our method and for the original MATHSM approach, for the setting of Fig. 4. For every position
(of the center) of the tool a color-coded point indicates the engagement angle. No engagement angles
were assessed during the spiral-down move within the white disk at the start of the path. We admit that
the color coding is not entirely reliable in the close neighborhood of the edges of the medial axis due to
multiple overlaps of the tool disk (which make it di�cult to place the correctly colored point �on top�
in the plots). Still, the plots make it evident why the original MATHSM paths are signi�cantly longer
than our paths: While our paths have engagement angles in the range 70◦ to 80◦ along large portions of
the cutting moves, the MATHSM path has angles mostly in the range 30◦ to 60◦. Only around the start
of the path and in the very left region and very right region of the pocket the angles reach 80◦. These
regions enforce a small value for the spacing of the machining circles. As it can be seen, such a small
spacing constitutes a waste for most portions of the path, thus leading to an excessively long path.

Of course, the results obtained depend on the geometry of the pocket and on the size of the tool. And
they depend on the start of the tool path, too. Still, overall the results for other pockets, tool sizes and
start points of the paths are similar to the results presented for the setting of Fig. 4.
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Fig. 4: Sample tool paths for θmax := 80 and the tool shown in the upper-left corners of the �gures: The
path in (a) was generated by our algorithm, while (b) shows the result for our implementation of the
original MATHSM algorithm.
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Fig. 5: Plots that show the distribution of the engagement angles along the tool paths for our method (a)
and for the original MATHSM approach (b).
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